#' BestTool.comb function
#'
#' This function computes confusion matrices and accuracy values for all combinations of all selected tools.
#' @param BestPat the table with summarized data generated with SumSingleTools() function
#' @keywords confiusion matrix accuracy precision lncRNA
#' @export
#' @examples
#' BP.cmb <- BestTool.comb(BestPat = BestPat3)
#' BP.cmb
BestTool.comb <- function(BestPat, selectComb){
'%!in%' <- function(x,y)!('%in%'(x,y))
dat <- as.factor(BestPat[,selectComb[1]])
levels(dat) <- c("0","1")
ref <- as.factor(BestPat$isNC)
levels(ref) <- c("0","1")
cm <- caret::confusionMatrix(data = dat,
reference = ref, mode = "prec_recall", positive = "1")
BP.cmb <- data.frame(torem = cm$overall)
for(i in which(colnames(BestPat) %in% selectComb)) {
dat <- as.factor(BestPat[,i])
ref <- as.factor(BestPat$isNC)
levels(dat) <- c("0","1")
levels(ref) <- c("0","1")
cm <- caret::confusionMatrix(data = dat,
reference = ref,
mode = "prec_recall", positive = "1")
cm <- data.frame(cm$overall)
cm <- round(cm, 4)
BP.cmb[,ncol(BP.cmb) +1] <- cm
names(BP.cmb)[ncol(BP.cmb)] <- colnames(BestPat)[i]
}
BP.cmb <- BP.cmb[,colnames(BP.cmb) %!in% "torem"]
return(BP.cmb)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.