Description Usage Arguments Examples
Deriving the log-lik and gradients
1 |
formula |
A formula in expression form of "y ~ model" |
start |
A list of start values for formula parameters |
links |
Link function for each parameters |
parameters |
A list of linear submodels |
data |
A list of parameter in the formula with values in vectors |
1 2 3 4 5 6 7 8 9 10 | set.seed(101)
dd <- data.frame(y = rpois(100, lambda = 1))
fun1 <- mkfun(y ~ dpois(exp(lambda)), start = list(lambda = 0), data = dd)
fun2 <- mkfun(y ~ dnorm(mean = b0 + b1 * latitude^2, sd = 1),start = list(lambda = 0), data = dd)
rfp <- transform(emdbook::ReedfrogPred, nsize = as.numeric(size), random = rnorm(48))
form <- surv ~ dbinom(size = density, prob = exp(log_a) / (1 + exp(log_a) * h * density))
fun3 <- mkfun(form, start = list(h = 1, log_a = 0),
parameters = list(log_a ~ poly(nsize)), data = rfp)
fun4 <- mkfun(form, start = list(h = 4, log_a = 2),
parameters = list(log_a ~ poly(random)), data = rfp)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.