Description Usage Arguments Examples
Deriving MLE
1 2 3 4 5 6 7 8 9 10 11 |
form |
A formula in expression form of "y ~ model" |
start |
A list of initial values for parameters |
data |
A data frame containing any variables used in the formula for the log-likelihood. ( |
fixed |
A list of parameter in the formula to keep fixed during optimization |
links |
link function for parameters (identity link as default) |
parameters |
A list of linear submodels and random effects |
random |
??? |
control |
A list of parameter to pass to optimizer (See |
method |
base R or TMB integration |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | d <- data.frame(x = 0:10, y = c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8))
fit0 <- mle(y ~ dpois(lambda = ymean), start = list(ymean = mean(d$y)), data = d)
ss <- list(ymean = mean(d$y), logsd = log(sd(d$y)))
fit3 <- mle(y ~ dnorm(mean = ymean, sd = exp(logsd)), start = ss, data = d)
set.seed(123)
x <- runif(20, 1, 10)
y <- rnorm(20, mean = 1.8 + 2.4 * x, sd = exp(0.3))
form <- y ~ dnorm(b0 + b1 * x, log_sigma)
fit <- mle(form,
start = list(b0 = 1, b1 = 2, log_sigma = sd(y)),
data = list(x = x, y = y), links = c(b0 = "identity", b1 = "identity", sigma = "log")
)
## linear submodels
set.seed(101)
rfp <- transform(emdbook::ReedfrogPred, nsize = as.numeric(size), random = rnorm(48))
form <- surv ~ dbinom(size = density, prob = exp(log_a) / (1 + exp(log_a) * h * density))
fit4 <- mle(form, start = list(h = 4, log_a = 2),
parameters = list(log_a ~ poly(random)), data = rfp)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.