R/originDataScreen_imputed.R

Defines functions originDataScreen_imputed

#---------------------------------------------------------------------------------------
## Original screen function to select independent reference taxa with imputed dataset
#---------------------------------------------------------------------------------------
originDataScreen_imputed <- function(data,
                                     testCovInd,
                                     nRef,
                                     paraJobs,
                                     refTaxa,
                                     maxDimensionScr = 434 * 5 * 10^5,
                                     sequentialRun,
                                     allFunc,
                                     Mprefix,
                                     covsPrefix,
                                     binPredInd,
                                     adjust_method = "fdr",
                                     fwerRate = 0.25) {
  results <- list()

  # load data info
  basicInfo <- dataInfo(
    data = data,
    Mprefix = Mprefix,
    covsPrefix = covsPrefix,
    binPredInd = binPredInd
  )

  taxaNames <- basicInfo$taxaNames
  nTaxa <- basicInfo$nTaxa
  nPredics <- basicInfo$nPredics
  rm(basicInfo)
  gc()

  nNorm <- nTaxa - 1
  nAlphaNoInt <- nPredics * nNorm
  nAlphaSelec <- nPredics * nTaxa

  countOfSelec <- rep(0, nAlphaSelec)

  MVarNamLength <- nchar(Mprefix)

  micros <-
    lapply(substr(colnames(data), 1, MVarNamLength), function(x) {
      grep(Mprefix, x)
    })
  microPositions <- which(micros == 1)

  xVarNamLength <- nchar(covsPrefix)
  predics <-
    lapply(substr(colnames(data), 1, xVarNamLength), function(x) {
      grep(covsPrefix, x)
    })
  predPositions <- which(predics == 1)
  predNames <- colnames(data)[predPositions]
  nPredics <- length(predNames)

  # extract x data
  xData <- data[, predNames]

  # overwrite nRef if the reference taxon is specified
  nRef <- length(refTaxa)

  startT1 <- proc.time()[3]
  if (length(paraJobs) == 0) {
    availCores <- parallelly::availableCores()
    if (is.numeric(availCores)) {
      paraJobs <- max(1, parallelly::availableCores() - 2)
    }
    if (!is.numeric(availCores)) {
      paraJobs <- 1
    }
  }

  if (!sequentialRun) {
    message(
      paraJobs,
      " parallel jobs are registered for the analysis."
    )
  }

  cl <- parallel::makeCluster(paraJobs)

  parallel::clusterExport(
    cl = cl,
    varlist = allFunc,
    envir = environment()
  )

  doParallel::registerDoParallel(cl)


  if (sequentialRun) {
    foreach::registerDoSEQ()
  }

  # start parallel computing
  scr1Resu <- foreach(
    i = seq_len(nRef),
    .multicombine = TRUE,
    .packages = c("glmnet", "Matrix"),
    .errorhandling = "pass"
  ) %dorng% {
    ref <- refTaxa[i]

    otherTaxaNames <- taxaNames[(taxaNames != ref)]
    microb_ref_dat <- log(data[, otherTaxaNames] / data[, ref])



    est_temp_save <- numeric(length(taxaNames) * nPredics)
    p_value_temp_save <- numeric(length(taxaNames) * nPredics)

    k <- 0
    for (j in taxaNames) {
      k <- k + 1
      if (j == ref) {
        est_temp_save[(k * 3 - 2):(k * 3)] <- 0
        p_value_temp_save[(k * 3 - 2):(k * 3)] <- NA
      } else {
        lm_res <- lm(microb_ref_dat[, j] ~ xData)

        full_name_coef <- names(lm_res$coefficients)
        valid_coef <- summary(lm_res)$coefficients
        bootResu <- matrix(nrow = length(full_name_coef), ncol = 4)
        rownames(bootResu) <- full_name_coef
        bootResu[rownames(bootResu) %in% rownames(valid_coef), ] <-
          valid_coef
        bootResu <- bootResu[-1, , drop = FALSE]

        est_temp_save[(k * 3 - 2):(k * 3)] <- abs(bootResu[, 1])
        p_value_temp_save[(k * 3 - 2):(k * 3)] <- bootResu[, 4]
      }
    }

    p_value_adj_temp_save <-
      p.adjust(p_value_temp_save, adjust_method,
        n = sum(!is.na(p_value_temp_save))
      )
    p_value_adj_temp_save[is.na(p_value_adj_temp_save)] <- 1

    CovCountall <- p_value_adj_temp_save < fwerRate

    countOfSelecForAllPred <-
      matrix(
        CovCountall,
        nrow = nPredics,
        ncol = length(taxaNames),
        byrow = FALSE
      )
    colnames(countOfSelecForAllPred) <- taxaNames
    EstOfAllPred <-
      matrix(
        est_temp_save,
        nrow = nPredics,
        ncol = length(taxaNames),
        byrow = FALSE
      )
    colnames(EstOfAllPred) <- taxaNames



    selection.i <- countOfSelecForAllPred[testCovInd, , drop = FALSE]
    coef.i <- EstOfAllPred[testCovInd, , drop = FALSE]

    recturnlist <- list()
    recturnlist[[1]] <- selection.i
    recturnlist[[2]] <- coef.i
    return(recturnlist)
  }

  parallel::stopCluster(cl)
  gc()
  rm(data)
  endT <- proc.time()[3]


  selecList <- list()
  for (i in seq_len(nRef)) {
    selecList[[i]] <- scr1Resu[[i]][[1]]
  }




  estList <- list()
  for (i in seq_len(nRef)) {
    estList[[i]] <- scr1Resu[[i]][[2]]
  }



  testCovCountMat <- base::Reduce("+", selecList)
  testEstMat <- base::Reduce("+", estList)

  rm(selecList, estList)



  # create count of selection for individual testCov


  # create overall count of selection for all testCov as a whole
  countOfSelecForAPred <-
    matrix(Matrix::colSums(testCovCountMat),
      nrow =
        1
    )
  estOfSelectForAPred <-
    matrix(Matrix::colSums(testEstMat), nrow = 1)
  gc()

  colnames(countOfSelecForAPred) <- taxaNames
  colnames(estOfSelectForAPred) <- taxaNames
  rm(taxaNames)

  # return results
  results$testCovCountMat <- testCovCountMat
  results$testEstMat <- testEstMat
  rm(testCovCountMat, testEstMat)
  results$countOfSelecForAPred <- countOfSelecForAPred
  results$estOfSelectForAPred <- estOfSelectForAPred
  rm(countOfSelecForAPred, estOfSelectForAPred)
  return(results)
}
quranwu/IFAA documentation built on Feb. 1, 2023, 10:38 a.m.