plot_pepNMFCon | R Documentation |
plot_pepNMFCon
plots the consensus heat maps from the NMF
classification of peptide log2FC
.
plot_prnNMFCon
plots the consensus heat maps from the NMF
classification of protein log2FC
.
plot_pepNMFCoef
plots the coefficient heat maps from the NMF
classification of peptide log2FC
.
plot_prnNMFCoef
plots the coefficient heat maps from the NMF
classification of protein log2FC
.
plot_pepNMFCon(
col_select = NULL,
scale_log2r = TRUE,
complete_cases = FALSE,
impute_na = TRUE,
df2 = NULL,
filename = NULL,
annot_cols = NULL,
annot_colnames = NULL,
rank = NULL,
...
)
plot_prnNMFCon(
col_select = NULL,
scale_log2r = TRUE,
complete_cases = FALSE,
impute_na = TRUE,
df2 = NULL,
filename = NULL,
annot_cols = NULL,
annot_colnames = NULL,
rank = NULL,
...
)
plot_pepNMFCoef(
col_select = NULL,
scale_log2r = TRUE,
complete_cases = FALSE,
impute_na = TRUE,
df2 = NULL,
filename = NULL,
annot_cols = NULL,
annot_colnames = NULL,
rank = NULL,
...
)
plot_prnNMFCoef(
col_select = NULL,
scale_log2r = TRUE,
complete_cases = FALSE,
impute_na = TRUE,
df2 = NULL,
filename = NULL,
annot_cols = NULL,
annot_colnames = NULL,
rank = NULL,
...
)
col_select |
Character string to a column key in |
scale_log2r |
Logical; if TRUE, adjusts |
complete_cases |
Logical; if TRUE, only cases that are complete with no missing values will be used. The default is FALSE. |
impute_na |
Logical; at the TRUE default, input files with
|
df2 |
Character vector or string; the name(s) of secondary data file(s).
An informatic task, i.e. |
filename |
A representative file name to outputs. By default, the
name(s) will be determined automatically. For text files, a typical file
extension is |
annot_cols |
A character vector of column keys in |
annot_colnames |
A character vector of replacement name(s) to
|
rank |
Numeric vector; the factorization rank(s) in
|
... |
|
The option of complete_cases
will be forced to TRUE
at
impute_na = FALSE
.
Consensus heat maps from NMF classification.
Metadata
load_expts
for metadata preparation and a reduced working example in data normalization
Data normalization
normPSM
for extended examples in PSM data normalization
PSM2Pep
for extended examples in PSM to peptide summarization
mergePep
for extended examples in peptide data merging
standPep
for extended examples in peptide data normalization
Pep2Prn
for extended examples in peptide to protein summarization
standPrn
for extended examples in protein data normalization.
purgePSM
and purgePep
for extended examples in data purging
pepHist
and prnHist
for extended examples in histogram visualization.
extract_raws
and extract_psm_raws
for extracting MS file names
Variable arguments of 'filter_...'
contain_str
, contain_chars_in
, not_contain_str
,
not_contain_chars_in
, start_with_str
,
end_with_str
, start_with_chars_in
and
ends_with_chars_in
for data subsetting by character strings
Missing values
pepImp
and prnImp
for missing value imputation
Informatics
pepSig
and prnSig
for significance tests
pepVol
and prnVol
for volcano plot visualization
prnGSPA
for gene set enrichment analysis by protein significance pVals
gspaMap
for mapping GSPA to volcano plot visualization
prnGSPAHM
for heat map and network visualization of GSPA results
prnGSVA
for gene set variance analysis
prnGSEA
for data preparation for online GSEA.
pepMDS
and prnMDS
for MDS visualization
pepPCA
and prnPCA
for PCA visualization
pepLDA
and prnLDA
for LDA visualization
pepHM
and prnHM
for heat map visualization
pepCorr_logFC
, prnCorr_logFC
, pepCorr_logInt
and
prnCorr_logInt
for correlation plots
anal_prnTrend
and plot_prnTrend
for trend analysis and visualization
anal_pepNMF
, anal_prnNMF
, plot_pepNMFCon
,
plot_prnNMFCon
, plot_pepNMFCoef
, plot_prnNMFCoef
and
plot_metaNMF
for NMF analysis and visualization
Custom databases
Uni2Entrez
for lookups between UniProt accessions and Entrez IDs
Ref2Entrez
for lookups among RefSeq accessions, gene names and Entrez IDs
prepGO
for gene
ontology
prepMSig
for molecular
signatures
prepString
and anal_prnString
for STRING-DB
Column keys in PSM, peptide and protein outputs
system.file("extdata", "psm_keys.txt", package = "proteoQ")
system.file("extdata", "peptide_keys.txt", package = "proteoQ")
system.file("extdata", "protein_keys.txt", package = "proteoQ")
# ===================================
# NMF
# ===================================
## !!!require the brief working example in `?load_expts`
## global option
scale_log2r <- TRUE
library(NMF)
# ===================================
# Analysis
# ===================================
## base (proteins)
library(NMF)
anal_prnNMF(
impute_na = FALSE,
col_group = Group,
rank = c(3:4),
nrun = 20,
)
# passing a different `method`
anal_prnNMF(
impute_na = FALSE,
col_group = Group,
method = "lee",
rank = c(3:4),
nrun = 20,
filename = lee.txt,
)
## row filtration and selected samples (proteins)
anal_prnNMF(
impute_na = FALSE,
col_select = BI,
col_group = Group,
rank = c(3:4),
nrun = 20,
filter_prots = exprs(prot_n_pep >= 3),
filename = bi_npep3.txt,
)
## additional row filtration by pVals (proteins, impute_na = FALSE)
# if not yet, run prerequisitive significance tests at `impute_na = FALSE`
pepSig(
impute_na = FALSE,
W2_bat = ~ Term["(W2.BI.TMT2-W2.BI.TMT1)",
"(W2.JHU.TMT2-W2.JHU.TMT1)",
"(W2.PNNL.TMT2-W2.PNNL.TMT1)"],
W2_loc = ~ Term_2["W2.BI-W2.JHU",
"W2.BI-W2.PNNL",
"W2.JHU-W2.PNNL"],
W16_vs_W2 = ~ Term_3["W16-W2"],
)
prnSig(impute_na = FALSE)
# (`W16_vs_W2.pVal (W16-W2)` now a column key)
anal_prnNMF(
impute_na = FALSE,
col_group = Group,
rank = c(3:4),
nrun = 20,
filter_prots_by_npep = exprs(prot_n_pep >= 3),
filter_prots_by_pval = exprs(`W16_vs_W2.pVal (W16-W2)` <= 1e-6),
filename = pval.txt,
)
## additional row filtration by pVals (impute_na = TRUE)
# if not yet, run prerequisitive NA imputation and corresponding
# significance tests at `impute_na = TRUE`
pepImp(m = 2, maxit = 2)
prnImp(m = 5, maxit = 5)
pepSig(
impute_na = TRUE,
W2_bat = ~ Term["(W2.BI.TMT2-W2.BI.TMT1)",
"(W2.JHU.TMT2-W2.JHU.TMT1)",
"(W2.PNNL.TMT2-W2.PNNL.TMT1)"],
W2_loc = ~ Term_2["W2.BI-W2.JHU",
"W2.BI-W2.PNNL",
"W2.JHU-W2.PNNL"],
W16_vs_W2 = ~ Term_3["W16-W2"],
)
prnSig(impute_na = TRUE)
anal_prnNMF(
impute_na = TRUE,
col_group = Group,
rank = c(3:4),
nrun = 20,
filter_prots_by_npep = exprs(prot_n_pep >= 3),
filter_prots_by_pval = exprs(`W16_vs_W2.pVal (W16-W2)` <= 1e-6),
filename = pval2.txt,
)
## analogous peptides
anal_pepNMF(
impute_na = TRUE,
col_group = Group,
rank = c(3:4),
nrun = 20,
filter_prots_by_npep = exprs(prot_n_pep >= 3),
filter_prots_by_pval = exprs(`W16_vs_W2.pVal (W16-W2)` <= 1e-6),
)
anal_pepNMF(
impute_na = FALSE,
col_group = Group,
rank = c(3:4),
nrun = 20,
filter_prots_by_npep = exprs(prot_n_pep >= 3),
filter_prots_by_pval = exprs(`W16_vs_W2.pVal (W16-W2)` <= 1e-6),
)
# ===================================
# consensus heat maps
# ===================================
## no NA imputation
# proteins, all available ranks
library(NMF)
plot_prnNMFCon(
impute_na = FALSE,
annot_cols = c("Color", "Alpha", "Shape"),
annot_colnames = c("Lab", "Batch", "WHIM"),
width = 14,
height = 14,
)
# analogous peptides
plot_pepNMFCon(
impute_na = FALSE,
col_select = BI,
annot_cols = c("Color", "Alpha", "Shape"),
annot_colnames = c("Lab", "Batch", "WHIM"),
color = colorRampPalette(RColorBrewer::brewer.pal(n = 7, name = "Spectral"))(50),
width = 10,
height = 10,
filename = bi.pdf,
)
# manual selection of input data file(s)
# may be used for optimizing individual plots
plot_prnNMFCon(
df2 = c("Protein_NMF_Z_rank3_consensus.txt", "Protein_NMF_Z_rank4_consensus.txt"),
impute_na = FALSE,
annot_cols = c("Color", "Alpha", "Shape"),
annot_colnames = c("Lab", "Batch", "WHIM"),
width = 14,
height = 14,
)
## NA imputation
# proteins, all available ranks
plot_prnNMFCon(
impute_na = TRUE,
annot_cols = c("Color", "Alpha", "Shape"),
annot_colnames = c("Lab", "Batch", "WHIM"),
width = 14,
height = 14,
)
# analogous peptides
plot_pepNMFCon(
impute_na = TRUE,
col_select = BI,
annot_cols = c("Color", "Alpha", "Shape"),
annot_colnames = c("Lab", "Batch", "WHIM"),
width = 10,
height = 10,
filename = bi_con.png,
)
# ===================================
# coefficient heat maps
# ===================================
## no NA imputation
# proteins, all available ranks
plot_prnNMFCoef(
impute_na = FALSE,
annot_cols = c("Color", "Alpha", "Shape"),
annot_colnames = c("Lab", "Batch", "WHIM"),
width = 12,
height = 12,
)
# manual selection of input data file(s)
# may be used for optimizing individual plots
plot_prnNMFCoef(
df2 = c("Protein_NMF_Z_rank3_coef.txt"),
impute_na = FALSE,
annot_cols = c("Color", "Alpha", "Shape"),
annot_colnames = c("Lab", "Batch", "WHIM"),
width = 12,
height = 12,
)
# analogous peptides
plot_pepNMFCoef(
impute_na = FALSE,
annot_cols = c("Color", "Alpha", "Shape"),
annot_colnames = c("Lab", "Batch", "WHIM"),
color = colorRampPalette(brewer.pal(n = 7, name = "Spectral"))(50),
width = 12,
height = 12,
)
## NA imputation
# proteins, all available ranks
plot_prnNMFCoef(
impute_na = TRUE,
annot_cols = c("Color", "Alpha", "Shape"),
annot_colnames = c("Lab", "Batch", "WHIM"),
width = 10,
height = 10,
)
# analogous peptides
plot_pepNMFCoef(
impute_na = TRUE,
annot_cols = c("Color", "Alpha", "Shape"),
annot_colnames = c("Lab", "Batch", "WHIM"),
width = 10,
height = 10,
)
# ===================================
# Metagene heat maps
# ===================================
## no NA imputation
# proteins, all available ranks
plot_metaNMF(
impute_na = FALSE,
annot_cols = c("Color", "Alpha", "Shape"),
annot_colnames = c("Lab", "Batch", "WHIM"),
# additional arguments for `pheatmap`
fontsize = 8,
fontsize_col = 5,
)
# proteins, selected sample(s)
plot_metaNMF(
impute_na = FALSE,
col_select = BI_1,
annot_cols = c("Color", "Alpha", "Shape"),
annot_colnames = c("Lab", "Batch", "WHIM"),
fontsize = 8,
fontsize_col = 5,
cellwidth = 6,
filename = bi1.png,
)
# proteins, selected sample(s) and row ordering
plot_metaNMF(
impute_na = FALSE,
col_select = BI_1,
annot_cols = c("Color", "Alpha", "Shape"),
annot_colnames = c("Lab", "Batch", "WHIM"),
fontsize = 8,
fontsize_col = 5,
cellwidth = 6,
cluster_rows = FALSE,
arrange_prots_by = exprs(gene),
filename = bi1_row_by_genes.png,
)
# manual selection of input .rda file(s)
# may be used for optimizing individual plots
plot_metaNMF(
df2 = c("Protein_NMF_Z_rank3.rda"),
impute_na = FALSE,
col_select = BI_1,
annot_cols = c("Color", "Alpha", "Shape"),
annot_colnames = c("Lab", "Batch", "WHIM"),
fontsize = 8,
fontsize_col = 5,
cellwidth = 6,
cluster_rows = FALSE,
arrange_prots_by = exprs(gene),
filename = bi1_row_by_genes.png,
)
## NA imputation
# proteins, all available ranks
plot_metaNMF(
impute_na = TRUE,
annot_cols = c("Color", "Alpha", "Shape"),
annot_colnames = c("Lab", "Batch", "WHIM"),
fontsize = 8,
fontsize_col = 5,
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.