prnGSVA | R Documentation |
prnGSVA
performs the GSVA against protein log2FC
. It is a
wrapper of gsva
.
prnGSVA(
gset_nms = c("go_sets", "c2_msig", "kinsub"),
scale_log2r = TRUE,
complete_cases = FALSE,
impute_na = FALSE,
df = NULL,
filepath = NULL,
filename = NULL,
var_cutoff = 0.5,
pval_cutoff = 1e-04,
logFC_cutoff = log2(1.1),
lm_method = "limma",
padj_method = "BH",
...
)
gset_nms |
Character string or vector containing the shorthanded name(s),
full file path(s), or both, to gene sets for enrichment analysis. For
species among |
scale_log2r |
Logical; if TRUE, adjusts |
complete_cases |
Logical; if TRUE, only cases that are complete with no missing values will be used. The default is FALSE. |
impute_na |
Logical; if TRUE, data with the imputation of missing values will be used. The default is FALSE. |
df |
The name of a primary data file. By default, it will be determined
automatically after matching the types of data and analysis with an
|
filepath |
Use system default. |
filename |
A representative file name to outputs. By default, it will be determined automatically by the name of the current call. |
var_cutoff |
Numeric; the cut-off in the variances of protein log2FC. Entries with variances smaller than the threshold will be removed from GSVA. The default is 0.5. |
pval_cutoff |
Numeric; the cut-off in enrichment pVals. Terms with enrichment pVals smaller than the threshold will be removed from multiple test corrections. The default is 1e-04. |
logFC_cutoff |
Numeric; the cut-off in enrichment log2FC. Terms with absolute log2FC smaller than the threshold will be removed from multiple test corrections. The default is at log2(1.1). |
lm_method |
Character string indicating the linear modeling method for
significance assessment of GSVA enrichment scores. The default is
|
padj_method |
Character string; the method of multiple-test corrections for uses with p.adjust. The default is "BH". See ?p.adjust.methods for additional choices. |
... |
|
The formula(s) of contrast(s) used in pepSig
will be taken by
default.
Metadata
load_expts
for metadata preparation and a reduced working example in data normalization
Data normalization
normPSM
for extended examples in PSM data normalization
PSM2Pep
for extended examples in PSM to peptide summarization
mergePep
for extended examples in peptide data merging
standPep
for extended examples in peptide data normalization
Pep2Prn
for extended examples in peptide to protein summarization
standPrn
for extended examples in protein data normalization.
purgePSM
and purgePep
for extended examples in data purging
pepHist
and prnHist
for extended examples in histogram visualization.
extract_raws
and extract_psm_raws
for extracting MS file names
Variable arguments of 'filter_...'
contain_str
, contain_chars_in
, not_contain_str
,
not_contain_chars_in
, start_with_str
,
end_with_str
, start_with_chars_in
and
ends_with_chars_in
for data subsetting by character strings
Missing values
pepImp
and prnImp
for missing value imputation
Informatics
pepSig
and prnSig
for significance tests
pepVol
and prnVol
for volcano plot visualization
prnGSPA
for gene set enrichment analysis by protein significance pVals
gspaMap
for mapping GSPA to volcano plot visualization
prnGSPAHM
for heat map and network visualization of GSPA results
prnGSVA
for gene set variance analysis
prnGSEA
for data preparation for online GSEA.
pepMDS
and prnMDS
for MDS visualization
pepPCA
and prnPCA
for PCA visualization
pepLDA
and prnLDA
for LDA visualization
pepHM
and prnHM
for heat map visualization
pepCorr_logFC
, prnCorr_logFC
, pepCorr_logInt
and
prnCorr_logInt
for correlation plots
anal_prnTrend
and plot_prnTrend
for trend analysis and visualization
anal_pepNMF
, anal_prnNMF
, plot_pepNMFCon
,
plot_prnNMFCon
, plot_pepNMFCoef
, plot_prnNMFCoef
and
plot_metaNMF
for NMF analysis and visualization
Custom databases
Uni2Entrez
for lookups between UniProt accessions and Entrez IDs
Ref2Entrez
for lookups among RefSeq accessions, gene names and Entrez IDs
prepGO
for gene
ontology
prepMSig
for molecular
signatures
prepString
and anal_prnString
for STRING-DB
Column keys in PSM, peptide and protein outputs
system.file("extdata", "psm_keys.txt", package = "proteoQ")
system.file("extdata", "peptide_keys.txt", package = "proteoQ")
system.file("extdata", "protein_keys.txt", package = "proteoQ")
# ===================================
# GSVA
# ===================================
## !!!require the brief working example in `?load_expts`
## global option
scale_log2r <- TRUE
## base
prnGSVA(
impute_na = FALSE,
min.sz = 10,
verbose = FALSE,
parallel.sz = 0,
mx.diff = TRUE,
gset_nms = "go_sets",
)
## row filtration
prnGSVA(
impute_na = FALSE,
min.sz = 10,
verbose = FALSE,
parallel.sz = 0,
mx.diff = TRUE,
gset_nms = c("go_sets", "kegg_sets"),
filter_prots = exprs(prot_n_pep >= 3),
filename = fil.txt,
)
## additional row filtration by pVals (impute_na = FALSE)
# if not yet, run prerequisitive significance tests at `impute_na = FALSE`
pepSig(
impute_na = FALSE,
W2_bat = ~ Term["W2.BI.TMT2-W2.BI.TMT1",
"W2.JHU.TMT2-W2.JHU.TMT1",
"W2.PNNL.TMT2-W2.PNNL.TMT1"],
W2_loc = ~ Term_2["W2.BI-W2.JHU",
"W2.BI-W2.PNNL",
"W2.JHU-W2.PNNL"],
W16_vs_W2 = ~ Term_3["W16-W2"],
)
prnSig(impute_na = FALSE)
# (`W16_vs_W2.pVal (W16-W2)` is now a column key)
prnGSVA(
min.sz = 10,
verbose = FALSE,
parallel.sz = 0,
mx.diff = TRUE,
gset_nms = "go_sets",
filter_prots_by_npep = exprs(prot_n_pep >= 3),
filter_prots_by_pval = exprs(`W16_vs_W2.pVal (W16-W2)` <= 1e-6),
)
## additional row filtration by pVals (impute_na = TRUE)
# if not yet, run prerequisitive NA imputation
pepImp(m = 2, maxit = 2)
prnImp(m = 5, maxit = 5)
# if not yet, run prerequisitive significance tests at `impute_na = TRUE`
pepSig(
impute_na = TRUE,
W2_bat = ~ Term["W2.BI.TMT2-W2.BI.TMT1",
"W2.JHU.TMT2-W2.JHU.TMT1",
"W2.PNNL.TMT2-W2.PNNL.TMT1"],
W2_loc = ~ Term_2["W2.BI-W2.JHU",
"W2.BI-W2.PNNL",
"W2.JHU-W2.PNNL"],
W16_vs_W2 = ~ Term_3["W16-W2"],
)
prnSig(impute_na = TRUE)
prnGSVA(
impute_na = TRUE,
min.sz = 10,
verbose = FALSE,
parallel.sz = 0,
mx.diff = TRUE,
gset_nms = "go_sets",
filter_prots_by_npep = exprs(prot_n_pep >= 3),
filter_prots_by_pval = exprs(`W16_vs_W2.pVal (W16-W2)` <= 1e-6),
)
## custom data bases
# see also ?proteoQ::prepGO
prepGO(human)
prepGO(mouse)
prnGSVA(
impute_na = FALSE,
min.sz = 10,
verbose = FALSE,
parallel.sz = 0,
mx.diff = TRUE,
gset_nms = c("~/proteoQ/dbs/go/go_hs.rds",
"~/proteoQ/dbs/go/go_mm.rds"),
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.