| pepHM | R Documentation |
pepHM applies dist and hclust
for the visualization of the heat maps of peptide log2FC via
pheatmap.
prnHM applies dist and hclust
for the visualization of the heat maps of protein log2FC via
pheatmap.
pepHM(
col_select = NULL,
col_order = NULL,
col_benchmark = NULL,
scale_log2r = TRUE,
complete_cases = FALSE,
impute_na = FALSE,
rm_allna = TRUE,
df = NULL,
filepath = NULL,
filename = NULL,
annot_cols = NULL,
annot_colnames = NULL,
annot_rows = NULL,
xmin = -1,
xmax = 1,
xmargin = 0.1,
hc_method_rows = "complete",
hc_method_cols = "complete",
p_dist_rows = 2,
p_dist_cols = 2,
x = NULL,
p = NULL,
method = NULL,
diag = NULL,
upper = NULL,
annotation_col = NULL,
annotation_row = NULL,
clustering_method = NULL,
...
)
prnHM(
col_select = NULL,
col_order = NULL,
col_benchmark = NULL,
scale_log2r = TRUE,
complete_cases = FALSE,
impute_na = FALSE,
rm_allna = TRUE,
df = NULL,
filepath = NULL,
filename = NULL,
annot_cols = NULL,
annot_colnames = NULL,
annot_rows = NULL,
xmin = -1,
xmax = 1,
xmargin = 0.1,
hc_method_rows = "complete",
hc_method_cols = "complete",
p_dist_rows = 2,
p_dist_cols = 2,
x = NULL,
p = NULL,
method = NULL,
diag = NULL,
upper = NULL,
annotation_col = NULL,
annotation_row = NULL,
clustering_method = NULL,
...
)
col_select |
Character string to a column key in |
col_order |
Character string to a column key in |
col_benchmark |
Not used. |
scale_log2r |
Logical; if TRUE, adjusts |
complete_cases |
Logical; if TRUE, only cases that are complete with no missing values will be used. The default is FALSE. |
impute_na |
Logical; if TRUE, data with the imputation of missing values will be used. The default is FALSE. |
rm_allna |
Logical; if TRUE, removes data rows that are exclusively NA
across ratio columns of |
df |
The name of a primary data file. By default, it will be determined
automatically after matching the types of data and analysis with an
|
filepath |
A file path to output results. By default, it will be
determined automatically by the name of the calling function and the value
of |
filename |
A representative file name to outputs. By default, the
name(s) will be determined automatically. For text files, a typical file
extension is |
annot_cols |
A character vector of column keys in |
annot_colnames |
A character vector of replacement name(s) to
|
annot_rows |
A character vector of column keys that can be found from
input files of |
xmin |
Numeric; the minimum x at a log2 scale. The default is -1. |
xmax |
Numeric; the maximum x at a log2 scale. The default is 1. |
xmargin |
Numeric; the margin in heat scales. The default is 0.1. |
hc_method_rows |
A character string; the same agglomeration method for
|
hc_method_cols |
A character string; similar to |
p_dist_rows |
Numeric; the power of the Minkowski distance in the measures
of row |
p_dist_cols |
Numeric; similar to |
x |
Dummy argument to avoid incurring the corresponding argument in dist by partial argument matches. |
p |
Dummy argument to avoid incurring the corresponding argument in dist by partial argument matches. |
method |
Dummy argument to avoid incurring the corresponding argument in dist by partial argument matches. |
diag |
Dummy argument to avoid incurring the corresponding argument in dist by partial argument matches. |
upper |
Dummy argument to avoid incurring the corresponding argument in dist by partial argument matches. |
annotation_col |
Dummy argument to avoid incurring the corresponding argument in pheatmap. |
annotation_row |
Dummy argument to avoid incurring the corresponding argument in pheatmap. |
clustering_method |
Dummy argument to avoid incurring the corresponding argument in pheatmap. |
... |
|
Data rows without non-missing pairs will result in NA distances in inter-row
dissimilarities (dist). At complet_cases = TRUE,
the data subset that are complete without missing values will be used. At
impute_na = TRUE, all data rows will be used with NA imputation (see
prnImp). At the default of complet_cases = FALSE and
impute_na = FALSE, NA distances will be arbitrarily replaced with the
mean value of the row-distance matrix for hierarchical row clustering.
Similar to data rows, NA distances in data columns will be replaced with the mean value of the column-distance matrix.
To avoid memory failure, row aggregation using the kmeans_k option
(pheatmap) may be considered for large data sets.
Heat maps and optional sub trees.
Metadata
load_expts for metadata preparation and a reduced working example in data normalization
Data normalization
normPSM for extended examples in PSM data normalization
PSM2Pep for extended examples in PSM to peptide summarization
mergePep for extended examples in peptide data merging
standPep for extended examples in peptide data normalization
Pep2Prn for extended examples in peptide to protein summarization
standPrn for extended examples in protein data normalization.
purgePSM and purgePep for extended examples in data purging
pepHist and prnHist for extended examples in histogram visualization.
extract_raws and extract_psm_raws for extracting MS file names
Variable arguments of 'filter_...'
contain_str, contain_chars_in, not_contain_str,
not_contain_chars_in, start_with_str,
end_with_str, start_with_chars_in and
ends_with_chars_in for data subsetting by character strings
Missing values
pepImp and prnImp for missing value imputation
Informatics
pepSig and prnSig for significance tests
pepVol and prnVol for volcano plot visualization
prnGSPA for gene set enrichment analysis by protein significance pVals
gspaMap for mapping GSPA to volcano plot visualization
prnGSPAHM for heat map and network visualization of GSPA results
prnGSVA for gene set variance analysis
prnGSEA for data preparation for online GSEA.
pepMDS and prnMDS for MDS visualization
pepPCA and prnPCA for PCA visualization
pepLDA and prnLDA for LDA visualization
pepHM and prnHM for heat map visualization
pepCorr_logFC, prnCorr_logFC, pepCorr_logInt and
prnCorr_logInt for correlation plots
anal_prnTrend and plot_prnTrend for trend analysis and visualization
anal_pepNMF, anal_prnNMF, plot_pepNMFCon,
plot_prnNMFCon, plot_pepNMFCoef, plot_prnNMFCoef and
plot_metaNMF for NMF analysis and visualization
Custom databases
Uni2Entrez for lookups between UniProt accessions and Entrez IDs
Ref2Entrez for lookups among RefSeq accessions, gene names and Entrez IDs
prepGO for gene
ontology
prepMSig for molecular
signatures
prepString and anal_prnString for STRING-DB
Column keys in PSM, peptide and protein outputs
system.file("extdata", "psm_keys.txt", package = "proteoQ")
system.file("extdata", "peptide_keys.txt", package = "proteoQ")
system.file("extdata", "protein_keys.txt", package = "proteoQ")
# ===================================
# Heat map
# ===================================
## !!!require the brief working example in `?load_expts`
## global option
scale_log2r <- TRUE
## proteins
# row clustering
prnHM(
xmin = -1,
xmax = 1,
xmargin = 0.1,
annot_cols = c("Group", "Color", "Alpha", "Shape"),
annot_colnames = c("Group", "Lab", "Batch", "WHIM"),
cluster_rows = TRUE,
cutree_rows = 10,
show_rownames = FALSE,
show_colnames = TRUE,
fontsize_row = 3,
cellwidth = 14,
width = 18,
height = 12,
filter_sp = exprs(species == "human", prot_n_pep >= 2),
filename = "huprns_npep2.png",
)
# rows ordered by kinase classes then by gene names
# (error if `normPSM(annot_kinases = FALSE, ...)`)
prnHM(
xmin = -1,
xmax = 1,
xmargin = 0.1,
annot_cols = c("Group", "Color", "Alpha", "Shape"),
annot_colnames = c("Group", "Lab", "Batch", "WHIM"),
cluster_rows = FALSE,
annot_rows = c("kin_class"),
show_rownames = TRUE,
show_colnames = TRUE,
fontsize_row = 2,
cellheight = 2,
cellwidth = 14,
width = 22,
height = 22,
filter_kin = exprs(kin_attr, species == "human"),
arrange_kin = exprs(kin_order, gene),
filename = "hukins_rows_by_class.png",
)
# `cutree_rows` ignored at `cluster_rows = FALSE`
prnHM(
scale_log2r = TRUE,
annot_cols = c("Group"),
cluster_rows = FALSE,
clustering_distance_rows = "maximum",
cutree_rows = 6,
show_rownames = FALSE,
show_colnames = TRUE,
fontsize_row = 3,
cellwidth = 14,
width = 22,
height = 22,
filename = "cutree_overruled.png",
)
# `minkowski` distance and `ward.D2` clustering
prnHM(
xmin = -1,
xmax = 1,
xmargin = 0.1,
annot_cols = c("Group", "Color", "Alpha", "Shape"),
annot_colnames = c("Group", "Lab", "Batch", "WHIM"),
cluster_rows = TRUE,
cutree_rows = 10,
show_rownames = FALSE,
show_colnames = TRUE,
fontsize_row = 3,
cellwidth = 14,
width = 18,
height = 12,
filter_sp = exprs(species == "human", prot_n_pep >= 2),
hc_method_rows = "ward.D2",
hc_method_cols = "ward.D2",
clustering_distance_rows = "minkowski",
clustering_distance_cols = "minkowski",
p_dist_rows = 2,
p_dist_cols = 2,
clustering_distance_cols = "manhattan",
filename = "rowminko2_colman_clustward.D2.png",
)
## additional row filtration by pVals (proteins, impute_na = FALSE)
# if not yet, run prerequisitive significance tests at `impute_na = FALSE`
pepSig(
impute_na = FALSE,
W2_bat = ~ Term["(W2.BI.TMT2-W2.BI.TMT1)",
"(W2.JHU.TMT2-W2.JHU.TMT1)",
"(W2.PNNL.TMT2-W2.PNNL.TMT1)"],
W2_loc = ~ Term_2["W2.BI-W2.JHU",
"W2.BI-W2.PNNL",
"W2.JHU-W2.PNNL"],
W16_vs_W2 = ~ Term_3["W16-W2"],
)
prnSig(impute_na = FALSE)
# (`W16_vs_W2.pVal (W16-W2)` now a column key)
prnHM(
xmin = -1,
xmax = 1,
xmargin = 0.1,
annot_cols = c("Group", "Color", "Alpha", "Shape"),
annot_colnames = c("Group", "Lab", "Batch", "WHIM"),
cluster_rows = TRUE,
cutree_rows = 10,
show_rownames = TRUE,
show_colnames = TRUE,
fontsize_row = 3,
cellwidth = 14,
filter_sp = exprs(species == "human", prot_n_pep >= 2),
filter_by = exprs(`W16_vs_W2.pVal (W16-W2)` <= 1e-6),
filename = "pval_cutoff_at_1e6.png",
)
## additional row filtration by pVals (proteins, impute_na = TRUE)
# if not yet, run prerequisitive NA imputation
pepImp(m = 2, maxit = 2)
prnImp(m = 5, maxit = 5)
# if not yet, run prerequisitive significance tests at `impute_na = TRUE`
pepSig(
impute_na = TRUE,
W2_bat = ~ Term["(W2.BI.TMT2-W2.BI.TMT1)",
"(W2.JHU.TMT2-W2.JHU.TMT1)",
"(W2.PNNL.TMT2-W2.PNNL.TMT1)"],
W2_loc = ~ Term_2["W2.BI-W2.JHU",
"W2.BI-W2.PNNL",
"W2.JHU-W2.PNNL"],
W16_vs_W2 = ~ Term_3["W16-W2"],
)
prnSig(impute_na = TRUE)
prnHM(
impute_na = TRUE,
xmin = -1,
xmax = 1,
xmargin = 0.1,
annot_cols = c("Group", "Color", "Alpha", "Shape"),
annot_colnames = c("Group", "Lab", "Batch", "WHIM"),
cluster_rows = TRUE,
cutree_rows = 10,
show_rownames = FALSE,
show_colnames = TRUE,
fontsize_row = 3,
cellwidth = 14,
width = 18,
height = 12,
filter_prots_by_sp_npep = exprs(species == "human", prot_n_pep >= 3),
filter_prots_by_pvals = exprs(`W16_vs_W2.pVal (W16-W2)` <= 1e-6),
filename = "huprns_fil_impna.png",
)
## peptides
# under selected protein(s)
pepHM(
xmin = -2,
xmax = 2,
xmargin = 0.1,
annot_cols = c("Group", "Color", "Alpha", "Shape"),
annot_colnames = c("Group", "Lab", "Batch", "WHIM"),
cluster_rows = TRUE,
annot_rows = c("gene"),
show_rownames = TRUE,
show_colnames = TRUE,
fontsize_row = 10,
cellwidth = 12,
cellheight = 12,
width = 18,
height = 12,
filter_by = exprs(gene %in% c("NCL", "Ncl")),
filename = "ncl_all.png",
)
# rows ordered by gene
pepHM(
xmin = -2,
xmax = 2,
xmargin = 0.1,
annot_cols = c("Group", "Color", "Alpha", "Shape"),
annot_colnames = c("Group", "Lab", "Batch", "WHIM"),
cluster_rows = FALSE,
annot_rows = c("gene"),
show_rownames = TRUE,
show_colnames = TRUE,
fontsize_row = 10,
cellwidth = 12,
cellheight = 12,
width = 18,
height = 12,
filter_by = exprs(gene %in% c("NCL", "Ncl")),
arrange_peps_by = exprs(gene),
filename = "ncl_rows_by_gene.png",
)
# rows ordered by sequence
# (may try alternatively `exprs(pep_seq)` if `pep_seq_mod` not a column key in `Peptide.txt`)
pepHM(
xmin = -2,
xmax = 2,
xmargin = 0.1,
annot_cols = c("Group", "Color", "Alpha", "Shape"),
annot_colnames = c("Group", "Lab", "Batch", "WHIM"),
cluster_rows = FALSE,
annot_rows = c("gene"),
show_rownames = TRUE,
show_colnames = TRUE,
fontsize_row = 10,
cellwidth = 12,
cellheight = 12,
width = 18,
height = 12,
filter_by = exprs(gene %in% c("NCL", "Ncl")),
arrange_peps_by = exprs(pep_seq_mod),
filename = "ncl_rows_by_seq.png",
)
# more options
pepHM(
xmin = -2,
xmax = 2,
xmargin = 0.1,
annot_cols = c("Group", "Color", "Alpha", "Shape"),
annot_colnames = c("Group", "Lab", "Batch", "WHIM"),
cluster_rows = FALSE,
annot_rows = c("gene", "W16_vs_W2.pVal (W16-W2)"),
show_rownames = TRUE,
show_colnames = TRUE,
fontsize_row = 10,
cellwidth = 12,
cellheight = 12,
width = 18,
height = 12,
filter_by = exprs(gene %in% c("NCL", "Ncl")),
filter_prots_by_pvals = exprs(`W16_vs_W2.pVal (W16-W2)` <= 1e-5),
arrange_by = exprs(gene, -`W16_vs_W2.pVal (W16-W2)`),
filename = "ncl_more.png",
)
# selected samples
pepHM(
col_select = BI_1,
xmin = -2,
xmax = 2,
xmargin = 0.1,
annot_cols = c("Group", "Color", "Alpha", "Shape"),
annot_colnames = c("Group", "Lab", "Batch", "WHIM"),
cluster_rows = TRUE,
annot_rows = c("gene"),
show_rownames = TRUE,
show_colnames = TRUE,
fontsize_row = 10,
cellwidth = 12,
cellheight = 12,
width = 18,
height = 12,
filter_by = exprs(gene %in% c("NCL", "Ncl")),
arrange_peps_by = exprs(gene),
filename = "ncl_bi1.png",
)
## multiple genes
genes <- c("NCL", "Ncl")
lapply(genes, function (gene) {
gn <- gene
pepHM(
xmin = -2,
xmax = 2,
xmargin = 0.1,
annot_cols = c("Group", "Color", "Alpha", "Shape"),
annot_colnames = c("Group", "Lab", "Batch", "WHIM"),
cluster_rows = FALSE,
show_rownames = TRUE,
show_colnames = TRUE,
fontsize_row = 10,
cellwidth = 12,
cellheight = 12,
width = 18,
height = 12,
arrange_pep = exprs(pep_start, pep_end),
filter_sp = exprs(gene == !!gn),
filename = !!paste0(gene, ".png"),
)
})
## Customer annotation colors
annot_colors_group <- colorRampPalette(brewer.pal(n = 9, "Set1"))(12)
names(annot_colors_group) <- c("W16.BI.TMT1", "W16.BI.TMT2",
"W16.JHU.TMT1", "W16.JHU.TMT2",
"W16.PNNL.TMT1", "W16.PNNL.TMT2",
"W2.BI.TMT1", "W2.BI.TMT2",
"W2.JHU.TMT1", "W2.JHU.TMT2",
"W2.PNNL.TMT1", "W2.PNNL.TMT2")
annot_colors_lab <- brewer.pal(n = 3, "Set2")
names(annot_colors_lab) <- c("BI", "JHU", "PNNL")
annot_colors_batch <- brewer.pal(n = 4, "Set3")[1:2]
names(annot_colors_batch) <- c("TMT1", "TMT2")
annot_colors_whim <- brewer.pal(n = 4, "Set3")[3:4]
names(annot_colors_whim) <- c("W16", "W2")
annot_colors <- list(Group = annot_colors_group,
Lab = annot_colors_lab,
Batch = annot_colors_batch,
WHIM = annot_colors_whim)
prnHM(
xmin = -1,
xmax = 1,
xmargin = 0.1,
annot_cols = c("Group", "Color", "Alpha", "Shape"),
annot_colnames = c("Group", "Lab", "Batch", "WHIM"),
annotation_colors = annot_colors,
cluster_rows = TRUE,
cutree_rows = 10,
show_rownames = FALSE,
show_colnames = TRUE,
fontsize_row = 3,
cellwidth = 14,
filter_sp = exprs(species == "human"),
filename = custom.png,
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.