pepVol | R Documentation |
pepVol
visualizes the volcano plots of peptide data.
prnVol
visualizes the volcano plots of protein data.
pepVol(
scale_log2r = TRUE,
complete_cases = FALSE,
impute_na = FALSE,
adjP = FALSE,
topn_labels = 20,
df = NULL,
filepath = NULL,
filename = NULL,
fml_nms = NULL,
theme = NULL,
highlights = NULL,
grids = NULL,
...
)
prnVol(
scale_log2r = TRUE,
complete_cases = FALSE,
impute_na = FALSE,
adjP = FALSE,
topn_labels = 20,
df = NULL,
filepath = NULL,
filename = NULL,
fml_nms = NULL,
theme = NULL,
highlights = NULL,
grids = NULL,
...
)
scale_log2r |
Logical; if TRUE, adjusts |
complete_cases |
Logical; if TRUE, only cases that are complete with no missing values will be used. The default is FALSE. |
impute_na |
Logical; if TRUE, data with the imputation of missing values will be used. The default is FALSE. |
adjP |
Logical; if TRUE, use Benjamini-Hochberg pVals in volcano plots. The default is FALSE. |
topn_labels |
A non-negative integer; the top-n species for labeling in a
plot. At |
df |
The name of a primary data file. By default, it will be determined
automatically after matching the types of data and analysis with an
|
filepath |
Use system default. |
filename |
A representative file name to outputs. By default, it will be determined automatically by the name of the current call. |
fml_nms |
Character string or vector; the formula name(s). By default,
the formula(s) will match those used in |
theme |
A ggplot2 theme, i.e., theme_bw(), or a custom theme. At the NULL default, a system theme will be applied. |
highlights |
A list of entries for highlighting. See also |
grids |
An integer or integer vector for subset visualization of
contrasts within a group. For example with a group of three contrasts,
|
... |
|
Metadata
load_expts
for metadata preparation
and a reduced working example in data normalization
Data normalization
normPSM
for extended examples in
PSM data normalization
PSM2Pep
for extended examples in
PSM to peptide summarization
mergePep
for extended
examples in peptide data merging
standPep
for extended
examples in peptide data normalization
Pep2Prn
for
extended examples in peptide to protein summarization
standPrn
for extended examples in protein data normalization.
purgePSM
and purgePep
for extended examples
in data purging
pepHist
and prnHist
for
extended examples in histogram visualization.
extract_raws
and extract_psm_raws
for extracting MS file names
Variable arguments of 'filter_...'
contain_str
,
contain_chars_in
, not_contain_str
,
not_contain_chars_in
, start_with_str
,
end_with_str
, start_with_chars_in
and
ends_with_chars_in
for data subsetting by character strings
Missing values
pepImp
and prnImp
for
missing value imputation
Informatics
pepSig
and prnSig
for
significance tests
pepVol
and prnVol
for
volcano plot visualization
prnGSPA
for gene set enrichment
analysis by protein significance pVals
gspaMap
for mapping
GSPA to volcano plot visualization
prnGSPAHM
for heat map
and network visualization of GSPA results
prnGSVA
for gene
set variance analysis
prnGSEA
for data preparation for
online GSEA.
pepMDS
and prnMDS
for MDS
visualization
pepPCA
and prnPCA
for PCA
visualization
pepLDA
and prnLDA
for LDA
visualization
pepHM
and prnHM
for heat map
visualization
pepCorr_logFC
, prnCorr_logFC
,
pepCorr_logInt
and prnCorr_logInt
for
correlation plots
anal_prnTrend
and
plot_prnTrend
for trend analysis and visualization
anal_pepNMF
, anal_prnNMF
,
plot_pepNMFCon
, plot_prnNMFCon
,
plot_pepNMFCoef
, plot_prnNMFCoef
and
plot_metaNMF
for NMF analysis and visualization
Custom databases
Uni2Entrez
for lookups between
UniProt accessions and Entrez IDs
Ref2Entrez
for lookups
among RefSeq accessions, gene names and Entrez IDs
prepGO
for
gene
ontology
prepMSig
for
molecular
signatures
prepString
and anal_prnString
for STRING-DB
Column keys in PSM, peptide and protein outputs
system.file("extdata", "psm_keys.txt", package = "proteoQ")
system.file("extdata", "peptide_keys.txt", package = "proteoQ")
system.file("extdata", "protein_keys.txt", package = "proteoQ")
# ===================================
# Volcano plots
# ===================================
## !!!require the brief working example in `?load_expts`
## global option
scale_log2r <- TRUE
## for all peptides or proteins
# all peptides
pepVol()
# all proteins
prnVol(
xco = 1.2,
yco = 0.01,
)
# hide `xco` and/or `yco` lines
# (xco = 0 -> log2(xco) = - Inf)
prnVol(
xco = 0,
yco = Inf,
filename = no_xylines.png,
)
# shows vertical center line at log2(1)
# (xco = 1 -> log2(xco) = 0)
prnVol(
xco = 1,
yco = Inf,
filename = no_xylines.png,
)
# kinases and prot_n_pep >= 2
prnVol(
xco = 1.2,
yco = 0.01,
filter_prots_by_kin = exprs(kin_attr, prot_n_pep >= 2),
filename = "kin_npep2.png"
)
# selected formula and/or customization
prnVol(
fml_nms = "W2_bat",
xmin = -5,
xmax = 5,
ymin = 0,
ymax = 30,
x_label = "Ratio ("*log[2]*")",
y_label = "pVal ("*-log[10]*")",
height = 6,
width = 6*2.7,
filename = custom.png,
)
# custom theme
library(ggplot2)
my_theme <- theme_bw() +
theme(
axis.text.x = element_text(angle = 0, vjust = 0.5, size = 24),
axis.ticks.x = element_blank(),
axis.text.y = element_text(angle = 0, vjust = 0.5, size = 24),
axis.title.x = element_text(colour = "black", size = 24),
axis.title.y = element_text(colour="black", size = 24),
plot.title = element_text(face = "bold", colour = "black", size = 14,
hjust = .5, vjust = .5),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank(),
strip.text.x = element_text(size = 16, colour = "black", angle = 0),
strip.text.y = element_text(size = 16, colour = "black", angle = 90),
legend.key = element_rect(colour = NA, fill = 'transparent'),
legend.background = element_rect(colour = NA, fill = "transparent"),
legend.position = "none",
legend.title = element_text(colour="black", size = 18),
legend.text = element_text(colour="black", size = 18),
legend.text.align = 0,
legend.box = NULL
)
prnVol(theme = my_theme, filename = my_theme.png)
# custom plot
# ("W2_bat" etc. are contrast names in `pepSig`)
prnVol(fml_nms = c("W2_bat", "W2_loc"), filename = foo.png)
res <- readRDS(file.path(dat_dir, "Protein/Volcano/W2_bat/foo.rds"))
# names(res)
p <- ggplot() +
geom_point(data = res$data, mapping = aes(x = log2Ratio, y = -log10(pVal)),
size = 3, colour = "#f0f0f0", shape = 20, alpha = .5) +
geom_point(data = res$greater, mapping = aes(x = log2Ratio, y = -log10(pVal)),
size = 3, color = res$palette[2], shape = 20, alpha = .8) +
geom_point(data = res$less, mapping = aes(x = log2Ratio, y = -log10(pVal)),
size = 3, color = res$palette[1], shape = 20, alpha = .8) +
geom_hline(yintercept = -log10(res$yco), linetype = "longdash", size = .5) +
geom_vline(xintercept = -log2(res$xco), linetype = "longdash", size = .5) +
geom_vline(xintercept = log2(res$xco), linetype = "longdash", size = .5) +
scale_x_continuous(limits = c(res$xmin, res$xmax)) +
scale_y_continuous(limits = c(res$ymin, res$ymax)) +
labs(title = res$title, x = res$x_label, y = res$y_label) +
res$theme
p <- p + geom_text(data = res$topns,
mapping = aes(x = log2Ratio,
y = -log10(pVal),
label = Index,
color = Index),
size = 3,
alpha = .5,
hjust = 0,
nudge_x = 0.05,
vjust = 0,
nudge_y = 0.05,
na.rm = TRUE)
p <- p + facet_wrap(~ Contrast, nrow = 1, labeller = label_value)
p <- p + geom_table(data = res$topn_labels, aes(table = gene),
x = -res$xmax*.85, y = res$ymax/2)
# Highlight
prnVol(
highlights = rlang::exprs(gene %in% c("ACTB", "GAPDH")),
filename = highlights.png
)
## protein subgroups by gene sets
# prerequisite analysis of GSPA
prnGSPA(
impute_na = FALSE,
pval_cutoff = 1E-2, # protein pVal threshold
logFC_cutoff = log2(1.1), # protein log2FC threshold
gspval_cutoff = 5E-2, # gene-set pVal threshold
gslogFC_cutoff = log2(1.2), # gene-set log2FC threshold
gset_nms = c("go_sets"),
)
# mapping gene sets to volcano-plot visualization
# (1) forced lines of `pval_cutoff` and `logFC_cutoff`
# according to the corresponding `prnGSPA` in red;
# (2) optional lines of `xco` and `yco` in grey
gspaMap(
impute_na = FALSE,
topn_gsets = 20,
show_sig = pVal,
)
# disable the lines of `xco` and `yco`,
gspaMap(
impute_na = FALSE,
topn_gsets = 20,
show_sig = pVal,
xco = 0,
yco = Inf,
)
# customized thresholds for visualization
gspaMap(
fml_nms = c("W2_bat", "W2_loc", "W16_vs_W2"),
gspval_cutoff = c(5E-2, 5E-2, 1E-10),
gslogFC_cutoff = log2(1.2),
topn_gsets = 20,
topn_labels = 0,
show_sig = pVal,
xco = 0,
yco = Inf,
)
## gspaMap(...) maps secondary results of `[...]Protein_GSPA_{NZ}[_impNA].txt`
# from prnGSPA(...) onto a primary `df` of `Protein[_impNA]_pVal.txt`
#
# see also ?prnGSPA for additional examples involving both `df` and `df2`,
# as well as `filter_` and `filter2_`
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.