#' Fit distance sampling with movement model
#'
#' @param ds named list of distance sampling data:
#' $data: matrix with observations for each row with (transect ID, x, y, t) columns
#' $transect: matrix with transects for each row with (transect ID, length)
#' $aux: vector of variables (region width, region length, truncation distance, observer speed, transect type 0line 1point)
#' $delta: vector of discretisation sizes in (space, time)
#' $hazardfn: code for hazard function to use (see ?hazardfns), default is 1
#' $move: 0 = 2d CDS model, 1 = 2d MDS model with estimated diffusion (must supply tag data), 2 = 2D MDS model with fixed diffusion (must supply fixed.sd)
#' @param move named list of movement data:
#' $fixed.sd fixed diffusion paramter, must be supplied and only used when ds$move = 2
#' $data list with matrix for each individual tagged with (x, y, t) observations in each row, required for ds$move = 1
#' @param start named initial values for (detection scale, detection shape, diffusion rate (ds$move == 1))
#' @param print FALSE by default, if TRUE then useful output is printed
#' @param level confidence interval level, default is 0.95
#' @param ... additional arguments to be passed to nlm (the optimisation routine)
#'
#' @return Named list:
#' $result table of estimated parameters, standard errors, and confidence intervals
#' $cor estimated correlation matrix between parameter estimates
#' $penc average probability of detection
#' $AIC Akaike's information criterion score for the model
#' $fit the fitted model object output by optim
#' $ds ds argument
#' $move move argument
#' $level confidence level supplied
#' @export
#'
mds <- function(ds,
move,
start,
print = FALSE,
level = 0.95,
...) {
if (print) cat("Checking input........")
check.input(ds, move, start, print, level)
if (print) cat("done\n")
# initial parameters
move.method <- ds$move
sdpar <- 0
npar <- length(start)
if (move.method == 1) {
sdpar <- EstDiff(move$data)
start[npar] <- sdpar
}
parnames <- names(start)
if (is.null(parnames)) parnames <- c(paste0("par", 1:(npar-1)), "sd")
# check inputs
if (any(start < 0)) stop("One or more parmeters are negative. They should all be positive.")
if (move.method == 1 & sdpar * sqrt(ds$delta[2]) > ds$delta[1] & ds$move == 1) {
warning("For estimated diffusive rate, chosen discretisation may lead to unstable approximation.
Reduce time-step or increase grid size.")
}
# discretise transects and data
if (print) cat("Discretising space and time.......")
dis <- Discretise(ds)
dtrans <- dis$dtrans
ddata <- dis$ddata
if (print) cat("done\n")
fixed.sd <- 0
if (move.method == 2) {
fixed.sd <- move$fixed.sd
}
# if asked to print, print headers
# save start time
start.time <- Sys.time();
if (print) cat("Fitting model.......\n")
if (print) cat("llk", " ", "parameters", "\n")
ini.par <- Natural2Working(start, ds$hazardfn)
mod <- suppressWarnings(nlm(NegativeLogLikelihood,
ini.par,
hessian = TRUE,
start = start,
data = ddata,
transdat = dtrans,
auxiliary_data = ds$aux,
delta = ds$delta,
num_cells = dis$numcells,
T = dis$T,
ymax = dis$ymax,
buffer = ds$buffer,
movement_data = move$data,
fixed_sd = fixed.sd,
hzfn = ds$hazardfn,
move_method = move.method,
print = print,
con = 100,
...))
end.time <- Sys.time()
time.taken <- difftime(end.time, start.time)
if (print) cat("Model fitting completed in ", time.taken, attr(time.taken, "units"), "\n")
# converged?
if (mod$code != 1) warning("Model failed to converge with nlm code ", mod$code, ".")
# get estimates
estimate <- Working2Natural(mod$estimate, ds$hazardfn)
# estimate covered area and abundance
if (print) cat("Estimating abundance......")
penc <- GetPenc(mod$estimate,
dtrans,
ds$aux,
ds$delta,
dis$numcells,
dis$T,
dis$ymax,
ds$buffer,
fixed.sd,
ds$hazardfn,
move.method)
n <- nrow(ddata)
N <- n / penc
if (print) cat("done\n")
# VARIANCE ESTIMATION
if (print) cat("Estimating variance......")
# variance matrix
V <- solve(mod$hessian)
# sds
sds <- sqrt(diag(V))
# variance of n
k <- nrow(ds$transect) # number of transects
var.n <- k * var(dtrans[,2])
# variance of penc using sandwich estimator
grad.penc <- numDeriv::grad(GetPenc,
mod$estimate,
transdat = dtrans,
auxiliary_data = ds$aux,
delta = ds$delta,
num_cells = dis$numcells,
T = dis$T,
ymax = dis$ymax,
buffer = ds$buffer,
fixed_sd = fixed.sd,
hzfn = ds$hazardfn,
move_method = move.method)
var.penc <- t(grad.penc) %*% V %*% grad.penc
# variance of N using delta method
var.N <- as.numeric(N^2 * (var.n / n^2 + var.penc / penc^2))
if (print) cat("done\n")
# cis
if (print) cat("Computing confidence intervals......")
alpha <- 1 - level
lower <- Working2Natural(mod$estimate - qnorm(1 - alpha / 2) * sds, ds$hazardfn)
upper <- Working2Natural(mod$estimate + qnorm(1 - alpha / 2) * sds, ds$hazardfn)
A <- prod(ds$aux[1:2])
D <- N / A
var.D <- var.N / A^2
N.ci <- N + c(-1, 1) * qnorm(1 - alpha / 2) * sqrt(var.N)
D.ci <- N.ci / A
if (print) cat("done\n")
# calc AIC
if (print) cat("Preparing results......")
aic <- 2 * mod$minimum + 2 * length(estimate)
# prepare results
avg.pdet <-penc / k
res <- data.frame(Estimate = c(estimate, N, D),
SE = c(sds, sqrt(var.N), sqrt(var.D)),
LCL = c(lower, N.ci[1], D.ci[1]),
UCL = c(upper, N.ci[2], D.ci[2]))
rownames(res) <- c(parnames, "N", "D")
res = list(result = res, cor = cov2cor(V), penc = avg.pdet, AIC = aic, fit = mod,
ds = ds, move = move, level = level)
class(res) <- c(class(res), "mds")
if (print) cat("done\n")
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.