lee | R Documentation |
A simple function to compute Lee's L statistic for bivariate spatial data;
L(x,y) = \frac{n}{\sum_{i=1}^{n}(\sum_{j=1}^{n}w_{ij})^2}
\frac{\sum_{i=1}^{n}(\sum_{j=1}^{n}w_{ij}(x_i-\bar{x})) ((\sum_{j=1}^{n}w_{ij}(y_j-\bar{y}))}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n}(y_i - \bar{y})^2}}
lee(x, y, listw, n, S2, zero.policy=attr(listw, "zero.policy"), NAOK=FALSE)
x |
a numeric vector the same length as the neighbours list in listw |
y |
a numeric vector the same length as the neighbours list in listw |
listw |
a |
n |
number of zones |
S2 |
Sum of squared sum of weights by rows. |
zero.policy |
default |
NAOK |
if 'TRUE' then any 'NA' or 'NaN' or 'Inf' values in x are passed on to the foreign function. If 'FALSE', the presence of 'NA' or 'NaN' or 'Inf' values is regarded as an error. |
a list of
L |
Lee's L statistic |
local L |
Lee's local L statistic |
Roger Bivand and Virgiio GÃ³mez-Rubio Virgilio.Gomez@uclm.es
Lee (2001). Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I. J Geograph Syst 3: 369-385
lee.mc
data(boston, package="spData")
lw<-nb2listw(boston.soi)
x<-boston.c$CMEDV
y<-boston.c$CRIM
z<-boston.c$RAD
Lxy<-lee(x, y, lw, length(x), zero.policy=TRUE)
Lxz<-lee(x, z, lw, length(x), zero.policy=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.