#' @title Calls Spearman correlation
#' @description Calls Spearman correlation as implemented in CoNet and formats output to adjacency matrix
#' @details Author: Karoline Faust.
#' Note that the CoNetinR implementation simply makes calls to the stat cor and cor.test functions.
#' Implementation in CoNetinR is therefore convenience only, as graphs are in the same format.
#'
#' @param data input dataset
#
#' @return adjacency matrix inferred from data
#' @export
testSpear = function(data){
N = length(data[,1])
adjmatrix = matrix(0, nrow=N, ncol=N)
scores = CoNetinR::getNetwork(mat = data, method="spearman", T.up=0.2, T.down=-0.2, shuffle.samples=F, norm=TRUE, rarefy=0, stand.rows=F, pval.cor=F, permut=F, renorm=F, permutandboot=F, iters=100, bh=T, min.occ=0, keep.filtered=F,report.full=T, verbose=F)
scores = scores$scores
pmatrix = CoNetinR::getNetwork(mat = data, method="spearman", T.up=0.2, T.down=-0.2, shuffle.samples=F, norm=TRUE, rarefy=0, stand.rows=F, pval.cor=T, permut=F, renorm=F, permutandboot=F, iters=100, bh=T, min.occ=0, keep.filtered=F, report.full=T, verbose=F)
pmatrix = pmatrix$pvalues
adjmatrix = matrix(nrow = N, ncol = N)
adjmatrix[lower.tri(adjmatrix)] = scores
adjmatrix = t(adjmatrix)
adjmatrix[lower.tri(adjmatrix)] = scores
for (i in 1:N){
for (j in 1:N){
if (is.na(adjmatrix[i,j])){
adjmatrix[i,j] = 0
}
else if (pmatrix[i,j] > 0.05){
adjmatrix[i,j] = 0
}
}
}
return(adjmatrix)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.