## ----setup, include = FALSE----------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
library(NetworkUtils)
## ---- eval = FALSE-------------------------------------------------------
# setname = "_hub"
# wdir="insertfilepath" # Needs to be supplied for the other sections of code to restore your filepath
# setwd(wdir)
#
# allhubklemm = NetworkUtils::generateKlemms(100, 100, 10, 0.05) # the generateKlemms function has two outputs:
# hubklemms = allklemm[[1]] # a matrix with interaction strengths, used to generate datasets
# hubklemmadj=allklemm[[2]] # an adjacency matrix, used to evaluate inferred networks
#
# # This function generates the datasets
# hubdata = generateSets(n=100, klemms=hubklemms, species=100, samples=80, x=1, mode="env", name=setname)
#
# # We ran CoNet and SparCC from a VM; make sure you set the working directory correctly before using writeSets or writeFeatures
# writeSets(n=100, x=1, hubdata)
## ---- eval = FALSE-------------------------------------------------------
# # This function runs network inference and analyses the inferred networks
# callTools(hubdata, hubklemmadj, toolnames=c("SpiecEasi GL", "SpiecEasi MB", "gCoda", "Spearman"), setname, x=1, n=100, absolute = TRUE, mode="env")
#
# # After running bashscript_CoNet.bash, this function can be used to parse the CoNet output
# readCoNet(name="brown", mode="hubs", x=1, n=100, alldata=hubdata, setname=set4, tool="CoNet Brown", klemmadj=hubklemmadj, wdir=wdir)
# readCoNet(name="fisher", mode="hubs", x=1, n=100, alldata=hubdata, setname=set4, tool="CoNet Fisher", klemmadj=hubklemmadj, wdir=wdir)
# readSpar(n=100, x=1, mode="hubs", alldata=hubdata, setname=set4, klemmadj=hubklemmadj, wdir=wdir)
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.