tests/testthat/_snaps/estimate_mdiff_paired.md

Compare estimate_mdiff_paired to ESCI_Data_paired, Thomasaon1

Code
  estimate
Output
  Analysis of raw data:
  Data frame = structure(list("Participant ID" = structure(1:12, levels = c("1", 
   Analysis of raw data:
  Data frame = "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"), class = "factor"), 
   Analysis of raw data:
  Data frame =     Pretest = c(13, 12, 12, 9, 14, 17, 14, 9, 6, 7, 11, 15), 
   Analysis of raw data:
  Data frame =     Posttest = c(14, 13, 16, 12, 15, 18, 13, 10, 10, 8, 14, 16
   Analysis of raw data:
  Data frame =     )), removedRows = list(), addedRows = list(list(start = 0L, 
   Analysis of raw data:
  Data frame =     end = 11L)), transforms = list(), row.names = c(NA, 12L), class = "data.frame")

  ---Overview---
    outcome_variable_name     mean   mean_LL  mean_UL median median_LL median_UL
  1               Pretest 11.58333  9.476776 13.68989   12.0         9        14
  2              Posttest 13.25000 11.410019 15.08998   13.5        10        16
          sd min max   q1    q3  n missing df   mean_SE median_SE
  1 3.315483   6  17  9.0 14.00 12       0 11 0.9570974  1.208488
  2 2.895922   8  18 11.5 15.25 12       0 11 0.8359806  1.450186

  -- es_mean_difference --
           type comparison_measure_name reference_measure_name             effect
  1  Comparison                Posttest                Pretest           Posttest
  2   Reference                Posttest                Pretest            Pretest
  11 Difference                Posttest                Pretest Posttest ‒ Pretest
     effect_size        LL        UL        SE df     ta_LL     ta_UL
  1    13.250000 11.410019 15.089981 0.8359806 11 11.748675 14.751325
  2    11.583333  9.476776 13.689890 0.9570974 11  9.864497 13.302170
  11    1.666667  0.715218  2.618115 0.4322831 11  0.890336  2.442997

  -- es_smd --
    comparison_measure_name reference_measure_name             effect effect_size
  1                Posttest                Pretest Posttest - Pretest   0.5105098
           LL        UL numerator denominator        SE  d_biased df
  1 0.1806393 0.8902152  1.666667    3.112779 0.1810176 0.5105098 11
  This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.

  -- es_r --
    x_variable_name y_variable_name               effect effect_size      LL
  1         Pretest        Posttest Pretest and Posttest   0.8923908 0.62894
          UL         SE  n df     ta_LL     ta_UL
  1 0.967157 0.06139936 12 10 0.6882891 0.9596343

  -- es_median_difference --
          type comparison_measure_name reference_measure_name             effect
    Comparison                Posttest                Pretest           Posttest
  1  Reference                Posttest                Pretest            Pretest
  2 Difference                Posttest                Pretest Posttest ‒ Pretest
    effect_size        LL        UL       SE     ta_LL     ta_UL
           13.5 10.000000 16.000000 1.450186 10.000000 16.000000
  1        12.0  9.000000 14.000000 1.208488  9.000000 14.000000
  2         1.5 -1.589665  4.589665 1.576389 -1.589665  4.589665

  -- es_mean_ratio --
    comparison_measure_name reference_measure_name             effect effect_size
  1                Posttest                Pretest Posttest / Pretest    1.143885
         LL       UL comparison_mean reference_mean
  1 1.05031 1.245797           13.25       11.58333
  [1] "This effect-size measure is appropriate only for true ratio scales."

  -- es_median_ratio --
    comparison_measure_name reference_measure_name             effect effect_size
  1                Posttest                Pretest Posttest / Pretest       1.125
           LL       UL comparison_median reference_median
  1 0.8723319 1.450853              13.5               12
  [1] "This effect-size measure is appropriate only for true ratio scales."


  Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
Code
  mytest
Output
  $properties
  $properties$effect_size_name
  [1] "mean"

  $properties$alpha
  [1] 0.05

  $properties$interval_null
  [1] FALSE

  $properties$rope
  [1] 0 0

  $properties$rope_units
  [1] "raw"


  $point_null
              test_type outcome_variable_name             effect null_words
  1 Nil Hypothesis Test    Posttest - Pretest Posttest ‒ Pretest       0.00
    confidence       LL       UL                          CI
  1         95 0.715218 2.618115 95% CI [0.715218, 2.618115]
                         CI_compare        t df           p p_result
  1 The 95% CI does not contain H_0 3.855498 11 0.002674001 p < 0.05
    null_decision                                           conclusion
  1    Reject H_0 At α = 0.05, 0.00 is not a plausible value of μ_diff
    significant
  1        TRUE
Code
  estimate_99
Output
  Analysis of raw data:
  Data frame = structure(list("Participant ID" = structure(1:12, levels = c("1", 
   Analysis of raw data:
  Data frame = "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"), class = "factor"), 
   Analysis of raw data:
  Data frame =     Pretest = c(13, 12, 12, 9, 14, 17, 14, 9, 6, 7, 11, 15), 
   Analysis of raw data:
  Data frame =     Posttest = c(14, 13, 16, 12, 15, 18, 13, 10, 10, 8, 14, 16
   Analysis of raw data:
  Data frame =     )), removedRows = list(), addedRows = list(list(start = 0L, 
   Analysis of raw data:
  Data frame =     end = 11L)), transforms = list(), row.names = c(NA, 12L), class = "data.frame")

  ---Overview---
    outcome_variable_name     mean   mean_LL  mean_UL median median_LL median_UL
  1               Pretest 11.58333  8.610774 14.55589   12.0         7        15
  2              Posttest 13.25000 10.653606 15.84639   13.5        10        16
          sd min max   q1    q3  n missing df   mean_SE median_SE
  1 3.315483   6  17  9.0 14.00 12       0 11 0.9570974  1.208488
  2 2.895922   8  18 11.5 15.25 12       0 11 0.8359806  1.450186

  -- es_mean_difference --
           type comparison_measure_name reference_measure_name             effect
  1  Comparison                Posttest                Pretest           Posttest
  2   Reference                Posttest                Pretest            Pretest
  11 Difference                Posttest                Pretest Posttest ‒ Pretest
     effect_size        LL        UL        SE df      ta_LL     ta_UL
  1    13.250000 10.653606 15.846394 0.8359806 11 10.9777384 15.522262
  2    11.583333  8.610774 14.555893 0.9570974 11  8.9818669 14.184800
  11    1.666667  0.324079  3.009254 0.4322831 11  0.4916869  2.841646

  -- es_smd --
    comparison_measure_name reference_measure_name             effect effect_size
  1                Posttest                Pretest Posttest - Pretest   0.5105098
            LL       UL numerator denominator        SE  d_biased df
  1 0.06915683 1.001698  1.666667    3.112779 0.1810176 0.5105098 11
  This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.

  -- es_r --
    x_variable_name y_variable_name               effect effect_size        LL
  1         Pretest        Posttest Pretest and Posttest   0.8923908 0.4887161
           UL         SE  n df     ta_LL     ta_UL
  1 0.9780952 0.06139936 12 10 0.5494077 0.9741826

  -- es_median_difference --
          type comparison_measure_name reference_measure_name             effect
    Comparison                Posttest                Pretest           Posttest
  1  Reference                Posttest                Pretest            Pretest
  2 Difference                Posttest                Pretest Posttest ‒ Pretest
    effect_size        LL        UL       SE     ta_LL     ta_UL
           13.5 10.000000 16.000000 1.450186 10.000000 16.000000
  1        12.0  7.000000 15.000000 1.208488  7.000000 15.000000
  2         1.5 -2.560508  5.560508 1.576389 -2.560508  5.560508

  -- es_mean_ratio --
    comparison_measure_name reference_measure_name             effect effect_size
  1                Posttest                Pretest Posttest / Pretest    1.143885
          LL       UL comparison_mean reference_mean
  1 1.014099 1.290281           13.25       11.58333
  [1] "This effect-size measure is appropriate only for true ratio scales."

  -- es_median_ratio --
    comparison_measure_name reference_measure_name             effect effect_size
  1                Posttest                Pretest Posttest / Pretest       1.125
           LL       UL comparison_median reference_median
  1 0.8053215 1.571577              13.5               12
  [1] "This effect-size measure is appropriate only for true ratio scales."


  Note: LL and UL are lower and upper boundaries of confidence intervals with 99% expected coverage.

Compare estimate_mdiff_paired to ESCI_Summary_paired, penlaptop1

Code
  estimate
Output
  Analysis of raw data:

  ---Overview---
    outcome_variable_name  mean  mean_LL  mean_UL   sd  n df mean_SE
  1                Before 12.88 11.06827 14.69173 3.40 16 15    0.85
  2                 After 14.25 11.96935 16.53065 4.28 16 15    1.07

  -- es_mean_difference --
           type comparison_measure_name reference_measure_name         effect
  1  Comparison                   After                 Before          After
  2   Reference                   After                 Before         Before
  11 Difference                   After                 Before After ‒ Before
     effect_size         LL        UL     SE df      ta_LL     ta_UL
  1        14.25 11.9693490 16.530651 1.0700 15 12.3742361 16.125764
  2        12.88 11.0682679 14.691732 0.8500 15 11.3899072 14.370093
  11        1.37  0.2350031  2.504997 0.5325 15  0.4365007  2.303499

  -- es_smd --
    comparison_measure_name reference_measure_name         effect effect_size
  1                   After                 Before After - Before   0.3424327
            LL        UL numerator denominator       SE  d_biased df
  1 0.05110995 0.6577932      1.37    3.865126 0.154769 0.3424327 15
  This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.

  -- es_r --
    x_variable_name y_variable_name           effect effect_size        LL
  1          Before           After Before and After   0.8707222 0.6430976
           UL         SE  n df     ta_LL     ta_UL
  1 0.9518053 0.06244354 16 14 0.6915049 0.9428632


  Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
Code
  mytest
Output
  $properties
  $properties$effect_size_name
  [1] "mean"

  $properties$alpha
  [1] 0.05

  $properties$interval_null
  [1] FALSE

  $properties$rope
  [1] 0 0

  $properties$rope_units
  [1] "raw"


  $point_null
              test_type outcome_variable_name         effect null_words
  1 Nil Hypothesis Test        After - Before After ‒ Before       0.00
    confidence        LL       UL                           CI
  1         95 0.2350031 2.504997 95% CI [0.2350031, 2.504997]
                         CI_compare       t df          p p_result null_decision
  1 The 95% CI does not contain H_0 2.57277 15 0.02121729 p < 0.05    Reject H_0
                                              conclusion significant
  1 At α = 0.05, 0.00 is not a plausible value of μ_diff        TRUE
Code
  estimate_99
Output
  Analysis of raw data:

  ---Overview---
    outcome_variable_name  mean  mean_LL  mean_UL   sd  n df mean_SE
  1                Before 12.88 10.37529 15.38471 3.40 16 15    0.85
  2                 After 14.25 11.09702 17.40298 4.28 16 15    1.07

  -- es_mean_difference --
           type comparison_measure_name reference_measure_name         effect
  1  Comparison                   After                 Before          After
  2   Reference                   After                 Before         Before
  11 Difference                   After                 Before After ‒ Before
     effect_size         LL        UL     SE df       ta_LL     ta_UL
  1        14.25 11.0970172 17.402983 1.0700 15 11.46534608 17.034654
  2        12.88 10.3752940 15.384706 0.8500 15 10.66789175 15.092108
  11        1.37 -0.1991246  2.939125 0.5325 15 -0.01582076  2.755821

  -- es_smd --
    comparison_measure_name reference_measure_name         effect effect_size
  1                   After                 Before After - Before   0.3424327
            LL      UL numerator denominator       SE  d_biased df
  1 -0.0442069 0.75311      1.37    3.865126 0.154769 0.3424327 15
  This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.

  -- es_r --
    x_variable_name y_variable_name           effect effect_size        LL
  1          Before           After Before and After   0.8707222 0.5317828
           UL         SE  n df     ta_LL     ta_UL
  1 0.9655115 0.06244354 16 14 0.5795743 0.9604938


  Note: LL and UL are lower and upper boundaries of confidence intervals with 99% expected coverage.

Ensure negative values processed correctly

Code
  estimate
Output
  Analysis of raw data:

  ---Overview---
    outcome_variable_name mean  mean_LL  mean_UL median median_LL median_UL
  1                    y2 21.6 4.167124 39.03288     28        14        40
  2                    y1 11.2 3.954738 18.44526     12         6        19
          sd min max q1   q3  n missing df  mean_SE median_SE
  1 31.47970 -67  52 17 40.0 15       0 14 8.128023  6.171216
  2 13.08325 -21  35  7 18.5 15       0 14 3.378081  3.085608

  -- es_mean_difference --
           type comparison_measure_name reference_measure_name  effect
  1  Comparison                      y1                     y2      y1
  2   Reference                      y1                     y2      y2
  11 Difference                      y1                     y2 y1 ‒ y2
     effect_size         LL         UL       SE df      ta_LL     ta_UL
  1         11.2   3.954738 18.4452623 3.378081 14   5.250152 17.149848
  2         21.6   4.167124 39.0328761 8.128023 14   7.284030 35.915970
  11       -10.4 -21.379887  0.5798875 5.119338 14 -19.416741 -1.383259

  -- es_smd --
    comparison_measure_name reference_measure_name  effect effect_size         LL
  1                      y1                     y2 y1 - y2  -0.4157442 -0.8900751
            UL numerator denominator        SE   d_biased df
  1 0.02719875     -10.4    24.10542 0.2340027 -0.4157442 14
  This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.

  -- es_r --
    x_variable_name y_variable_name    effect effect_size        LL        UL
  1              y2              y1 y2 and y1   0.9336117 0.7956616 0.9766029
            SE  n df     ta_LL     ta_UL
  1 0.03430812 15 13 0.8267061 0.9719999

  -- es_median_difference --
          type comparison_measure_name reference_measure_name  effect effect_size
    Comparison                      y1                     y2      y1          12
  1  Reference                      y1                     y2      y2          28
  2 Difference                      y1                     y2 y1 ‒ y2         -16
           LL        UL       SE     ta_LL     ta_UL
      6.00000 19.000000 3.085608   6.00000 19.000000
  1  14.00000 40.000000 6.171216  14.00000 40.000000
  2 -25.23798 -6.762016 4.713344 -25.23798 -6.762016

  -- es_mean_ratio --
    comparison_measure_name reference_measure_name  effect effect_size        LL
  1                      y1                     y2 y1 / y2   0.5185185 0.3809957
           UL comparison_mean reference_mean
  1 0.7056811            11.2           21.6
  [1] "WARNING!  Your dataset includes negative values.  This effect-size measure is appropriate only for true ratio scales."

  -- es_median_ratio --
    comparison_measure_name reference_measure_name  effect effect_size LL UL
  1                      y1                     y2 y1 / y2          NA NA NA
    comparison_median reference_median
  1                NA               NA
  [1] "WARNING!  Your dataset includes negative values.  This effect-size measure is appropriate only for true ratio scales."


  Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
  Warnings:
  * The ratio between group effect size is appropriate only for true ratio scales where values < 0 are impossible.  Your data include at least one negative value, so the requested ratio effect size is not reported.

Test different types of calls to estimate_mdiff_paired

Code
  from_vector
Output
  Analysis of raw data:

  ---Overview---
    outcome_variable_name     mean  mean_LL  mean_UL median median_LL median_UL
  1            bk_wrapper 2.266667 1.757755 2.775578      2         1         3
  2            wc_wrapper 1.833333 1.506871 2.159795      2         1         2
           sd min max q1 q3  n missing df   mean_SE median_SE
  1 1.3628908   1   5  1  3 30       0 29 0.2488287 0.4936052
  2 0.8742813   1   4  1  2 30       0 29 0.1596212 0.2468026

  -- es_mean_difference --
           type comparison_measure_name reference_measure_name
  1  Comparison              wc_wrapper             bk_wrapper
  2   Reference              wc_wrapper             bk_wrapper
  11 Difference              wc_wrapper             bk_wrapper
                      effect effect_size         LL         UL        SE df
  1               wc_wrapper   1.8333333  1.5068713 2.15979534 0.1596212 29
  2               bk_wrapper   2.2666667  1.7577549 2.77557845 0.2488287 29
  11 wc_wrapper ‒ bk_wrapper  -0.4333333 -0.9398777 0.07321103 0.2476711 29
          ta_LL      ta_UL
  1   1.5621166  2.1045500
  2   1.8438751  2.6894582
  11 -0.8541581 -0.0125086

  -- es_smd --
    comparison_measure_name reference_measure_name                  effect
  1              wc_wrapper             bk_wrapper wc_wrapper - bk_wrapper
    effect_size         LL       UL  numerator denominator        SE   d_biased
  1  -0.3718897 -0.8165806 0.059636 -0.4333333    1.144954 0.2235287 -0.3718897
    df
  1 29
  This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.

  -- es_r --
    x_variable_name y_variable_name                    effect effect_size
  1      bk_wrapper      wc_wrapper bk_wrapper and wc_wrapper     0.32798
             LL        UL        SE  n df      ta_LL     ta_UL
  1 -0.04226176 0.6119942 0.1657199 30 28 0.01835401 0.5726524

  -- es_median_difference --
          type comparison_measure_name reference_measure_name
    Comparison              wc_wrapper             bk_wrapper
  1  Reference              wc_wrapper             bk_wrapper
  2 Difference              wc_wrapper             bk_wrapper
                     effect effect_size        LL       UL        SE     ta_LL
                 wc_wrapper           2  1.000000 2.000000 0.2468026  1.000000
  1              bk_wrapper           2  1.000000 3.000000 0.4936052  1.000000
  2 wc_wrapper ‒ bk_wrapper           0 -1.109202 1.109202 0.5659300 -1.109202
       ta_UL
    2.000000
  1 3.000000
  2 1.109202

  -- es_mean_ratio --
    comparison_measure_name reference_measure_name                  effect
  1              wc_wrapper             bk_wrapper wc_wrapper / bk_wrapper
    effect_size        LL       UL comparison_mean reference_mean
  1   0.8088235 0.6385273 1.024538        1.833333       2.266667
  [1] "This effect-size measure is appropriate only for true ratio scales."

  -- es_median_ratio --
    comparison_measure_name reference_measure_name                  effect
  1              wc_wrapper             bk_wrapper wc_wrapper / bk_wrapper
    effect_size        LL       UL comparison_median reference_median
  1           1 0.5239318 1.908646                 2                2
  [1] "This effect-size measure is appropriate only for true ratio scales."


  Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
Code
  from_df_strings
Output
  Analysis of raw data:
  Data frame = structure(list(wc = c(2, 3, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 
   Analysis of raw data:
  Data frame = 4, 1, 1, 4, 2, 2, 1, 2, 2, 1, 3, 2, 2, 1, 1, 2, 2), bk = c(4, 
   Analysis of raw data:
  Data frame = 4, 3, 2, 2, 5, 1, 1, 3, 1, 1, 2, 4, 3, 1, 1, 1, 3, 1, 1, 1, 5, 
   Analysis of raw data:
  Data frame = 1, 4, 1, 3, 2, 4, 2, 1)), row.names = c(NA, 30L), class = "data.frame")

  ---Overview---
    outcome_variable_name     mean  mean_LL  mean_UL median median_LL median_UL
  1                    bk 2.266667 1.757755 2.775578      2         1         3
  2                    wc 1.833333 1.506871 2.159795      2         1         2
           sd min max q1 q3  n missing df   mean_SE median_SE
  1 1.3628908   1   5  1  3 30       0 29 0.2488287 0.4936052
  2 0.8742813   1   4  1  2 30       0 29 0.1596212 0.2468026

  -- es_mean_difference --
           type comparison_measure_name reference_measure_name  effect
  1  Comparison                      wc                     bk      wc
  2   Reference                      wc                     bk      bk
  11 Difference                      wc                     bk wc ‒ bk
     effect_size         LL         UL        SE df      ta_LL      ta_UL
  1    1.8333333  1.5068713 2.15979534 0.1596212 29  1.5621166  2.1045500
  2    2.2666667  1.7577549 2.77557845 0.2488287 29  1.8438751  2.6894582
  11  -0.4333333 -0.9398777 0.07321103 0.2476711 29 -0.8541581 -0.0125086

  -- es_smd --
    comparison_measure_name reference_measure_name  effect effect_size         LL
  1                      wc                     bk wc - bk  -0.3718897 -0.8165806
          UL  numerator denominator        SE   d_biased df
  1 0.059636 -0.4333333    1.144954 0.2235287 -0.3718897 29
  This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.

  -- es_r --
    x_variable_name y_variable_name    effect effect_size          LL        UL
  1              bk              wc bk and wc     0.32798 -0.04226176 0.6119942
           SE  n df      ta_LL     ta_UL
  1 0.1657199 30 28 0.01835401 0.5726524

  -- es_median_difference --
          type comparison_measure_name reference_measure_name  effect effect_size
    Comparison                      wc                     bk      wc           2
  1  Reference                      wc                     bk      bk           2
  2 Difference                      wc                     bk wc ‒ bk           0
           LL       UL        SE     ta_LL    ta_UL
     1.000000 2.000000 0.2468026  1.000000 2.000000
  1  1.000000 3.000000 0.4936052  1.000000 3.000000
  2 -1.109202 1.109202 0.5659300 -1.109202 1.109202

  -- es_mean_ratio --
    comparison_measure_name reference_measure_name  effect effect_size        LL
  1                      wc                     bk wc / bk   0.8088235 0.6385273
          UL comparison_mean reference_mean
  1 1.024538        1.833333       2.266667
  [1] "This effect-size measure is appropriate only for true ratio scales."

  -- es_median_ratio --
    comparison_measure_name reference_measure_name  effect effect_size        LL
  1                      wc                     bk wc / bk           1 0.5239318
          UL comparison_median reference_median
  1 1.908646                 2                2
  [1] "This effect-size measure is appropriate only for true ratio scales."


  Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.
Code
  from_df_tidy
Output
  Analysis of raw data:
  Data frame = structure(list(wc = c(2, 3, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 
   Analysis of raw data:
  Data frame = 4, 1, 1, 4, 2, 2, 1, 2, 2, 1, 3, 2, 2, 1, 1, 2, 2), bk = c(4, 
   Analysis of raw data:
  Data frame = 4, 3, 2, 2, 5, 1, 1, 3, 1, 1, 2, 4, 3, 1, 1, 1, 3, 1, 1, 1, 5, 
   Analysis of raw data:
  Data frame = 1, 4, 1, 3, 2, 4, 2, 1)), row.names = c(NA, 30L), class = "data.frame")

  ---Overview---
    outcome_variable_name     mean  mean_LL  mean_UL median median_LL median_UL
  1                    bk 2.266667 1.757755 2.775578      2         1         3
  2                    wc 1.833333 1.506871 2.159795      2         1         2
           sd min max q1 q3  n missing df   mean_SE median_SE
  1 1.3628908   1   5  1  3 30       0 29 0.2488287 0.4936052
  2 0.8742813   1   4  1  2 30       0 29 0.1596212 0.2468026

  -- es_mean_difference --
           type comparison_measure_name reference_measure_name  effect
  1  Comparison                      wc                     bk      wc
  2   Reference                      wc                     bk      bk
  11 Difference                      wc                     bk wc ‒ bk
     effect_size         LL         UL        SE df      ta_LL      ta_UL
  1    1.8333333  1.5068713 2.15979534 0.1596212 29  1.5621166  2.1045500
  2    2.2666667  1.7577549 2.77557845 0.2488287 29  1.8438751  2.6894582
  11  -0.4333333 -0.9398777 0.07321103 0.2476711 29 -0.8541581 -0.0125086

  -- es_smd --
    comparison_measure_name reference_measure_name  effect effect_size         LL
  1                      wc                     bk wc - bk  -0.3718897 -0.8165806
          UL  numerator denominator        SE   d_biased df
  1 0.059636 -0.4333333    1.144954 0.2235287 -0.3718897 29
  This standardized mean difference is called d_average because the standardizer used was s_average. d_average has been corrected for bias. Correction for bias can be important when df < 50.

  -- es_r --
    x_variable_name y_variable_name    effect effect_size          LL        UL
  1              bk              wc bk and wc     0.32798 -0.04226176 0.6119942
           SE  n df      ta_LL     ta_UL
  1 0.1657199 30 28 0.01835401 0.5726524

  -- es_median_difference --
          type comparison_measure_name reference_measure_name  effect effect_size
    Comparison                      wc                     bk      wc           2
  1  Reference                      wc                     bk      bk           2
  2 Difference                      wc                     bk wc ‒ bk           0
           LL       UL        SE     ta_LL    ta_UL
     1.000000 2.000000 0.2468026  1.000000 2.000000
  1  1.000000 3.000000 0.4936052  1.000000 3.000000
  2 -1.109202 1.109202 0.5659300 -1.109202 1.109202

  -- es_mean_ratio --
    comparison_measure_name reference_measure_name  effect effect_size        LL
  1                      wc                     bk wc / bk   0.8088235 0.6385273
          UL comparison_mean reference_mean
  1 1.024538        1.833333       2.266667
  [1] "This effect-size measure is appropriate only for true ratio scales."

  -- es_median_ratio --
    comparison_measure_name reference_measure_name  effect effect_size        LL
  1                      wc                     bk wc / bk           1 0.5239318
          UL comparison_median reference_median
  1 1.908646                 2                2
  [1] "This effect-size measure is appropriate only for true ratio scales."


  Note: LL and UL are lower and upper boundaries of confidence intervals with 95% expected coverage.


rcalinjageman/esci documentation built on Dec. 23, 2024, 2:37 p.m.