estimate_mdiff_ind_contrast: Estimates for a multi-group design with a continuous outcome...

View source: R/estimate_mdiff_ind_contrast.R

estimate_mdiff_ind_contrastR Documentation

Estimates for a multi-group design with a continuous outcome variable

Description

Returns object estimate_mdiff_ind_contrast is suitable for a multi-group design (between subjects) with a continuous outcome variable. It accepts a user-defined set of contrast weights that allows estimation of any 1-df contrast. It can express estimates as mean differences, standardized mean differences (Cohen's d) or median differences (raw data only). You can pass raw data or summary data.

Usage

estimate_mdiff_ind_contrast(
  data = NULL,
  outcome_variable = NULL,
  grouping_variable = NULL,
  means = NULL,
  sds = NULL,
  ns = NULL,
  contrast = NULL,
  grouping_variable_levels = NULL,
  outcome_variable_name = "My outcome variable",
  grouping_variable_name = "My grouping variable",
  conf_level = 0.95,
  assume_equal_variance = FALSE,
  save_raw_data = TRUE
)

Arguments

data

For raw data - a data frame or tibble

outcome_variable

For raw data - The column name of the outcome variable, or a vector of numeric data

grouping_variable

For raw data - The column name of the grouping variable, or a vector of group names

means

For summary data - A vector of 2 or more means

sds

For summary data - A vector of standard deviations, same length as means

ns

For summary data - A vector of sample sizes, same length as means

contrast

A vector of group weights, same length as number of groups.

grouping_variable_levels

For summary data - An optional vector of group labels, same length as means

outcome_variable_name

Optional friendly name for the outcome variable. Defaults to 'My outcome variable' or the outcome variable column name if a data frame is passed.

grouping_variable_name

Optional friendly name for the grouping variable. Defaults to 'My grouping variable' or the grouping variable column name if a data.frame is passed.

conf_level

The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95.

assume_equal_variance

Defaults to FALSE

save_raw_data

For raw data; defaults to TRUE; set to FALSE to save memory by not returning raw data in estimate object

Details

Reach for this function in place of a one-way ANOVA.

Once you generate an estimate with this function, you can visualize it with plot_mdiff() and you can test hypotheses with test_mdiff().

The estimated mean differences are from statpsych::ci.lc.mean.bs().

The estimated SMDs are from CI_smd_ind_contrast() which relies on statpsych::ci.lc.stdmean.bs() unless there are only 2 groups.

The estimated median differences are from statpsych::ci.lc.median.bs()

Value

Returns object of class esci_estimate

  • es_mean_difference

    • type -

    • outcome_variable_name -

    • grouping_variable_name -

    • effect -

    • effect_size -

    • LL -

    • UL -

    • SE -

    • df -

    • ta_LL -

    • ta_UL -

  • es_median_difference

    • type -

    • outcome_variable_name -

    • grouping_variable_name -

    • effect -

    • effect_size -

    • LL -

    • UL -

    • SE -

    • ta_LL -

    • ta_UL -

  • es_smd

    • outcome_variable_name -

    • grouping_variable_name -

    • effect -

    • effect_size -

    • LL -

    • UL -

    • numerator -

    • denominator -

    • SE -

    • df -

    • d_biased -

  • overview

    • outcome_variable_name -

    • grouping_variable_name -

    • grouping_variable_level -

    • mean -

    • mean_LL -

    • mean_UL -

    • median -

    • median_LL -

    • median_UL -

    • sd -

    • min -

    • max -

    • q1 -

    • q3 -

    • n -

    • missing -

    • df -

    • mean_SE -

    • median_SE -

  • raw_data

    • grouping_variable -

    • outcome_variable -

Examples

# From raw data
data("data_rattanmotivation")

estimate_from_raw <- esci::estimate_mdiff_ind_contrast(
  esci::data_rattanmotivation,
  Motivation,
  Group,
  contrast = c("Challenge" = 1, "Control" = -1/2, "Comfort" = -1/2)
)

# To visualize the estimate
myplot_from_raw <- esci::plot_mdiff(
  estimate_from_raw,
  effect_size = "median"
)

# To conduct a hypothesis test
res_htest_from_raw <- esci::test_mdiff(
  estimate_from_raw,
  effect_size = "median"
)


# From summary data
data("data_halagappa")

estimate_from_summary <- estimate_mdiff_ind_contrast(
  means = data_halagappa$Mean,
  sds = data_halagappa$SD,
  ns = data_halagappa$n,
  grouping_variable_levels = as.character(data_halagappa$Groups),
  assume_equal_variance = TRUE,
  contrast = c(
    "NFree10" = 1/3,
    "AFree10" = 1/3,
    "ADiet10" = -1/3,
    "NFree17" = -1/3,
    "AFree17" = 1/3,
    "ADiet17" = -1/3
  ),
  grouping_variable_name = "Diet",
  outcome_variable_name = "% time near target"
)

# To visualize the estimate
myplot <- esci::plot_mdiff(estimate_from_summary, effect_size = "mean")

# To conduct a hypothesis test
res_htest_from_raw <- esci::test_mdiff(
  estimate_from_summary,
  effect_size = "mean"
)


rcalinjageman/esci documentation built on Dec. 23, 2024, 2:37 p.m.