View source: R/estimate_proportion.R
estimate_proportion | R Documentation |
estimate_proportion
is suitable for a single group design with a
categorical outcome variable. It estimates the population proportion
for the frequency of each level of the outcome variable, with confidence
intervals. You can pass raw data or summary data.
estimate_proportion(
data = NULL,
outcome_variable = NULL,
cases = NULL,
case_label = 1,
outcome_variable_levels = NULL,
outcome_variable_name = "My outcome variable",
conf_level = 0.95,
count_NA = FALSE
)
data |
For raw data - a data frame or tibble |
outcome_variable |
For raw data - The column name of the outcome variable, which must be a factor, or a vector that is a factor |
cases |
For summary data - A vector of cases |
case_label |
A numeric or string indicating which level of the factor to estimate. Defaults to 1, meaning first level is analyzed |
outcome_variable_levels |
For summary data - optional vector of 2 characters indicating name of the count level and name of the not count level. Defaults to "Affected" and "Not Affected" |
outcome_variable_name |
Optional friendly name for the outcome variable. Defaults to 'My outcome variable' or the outcome variable column name if a data frame is passed. |
conf_level |
The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95. |
count_NA |
Logical to count NAs (TRUE) in total N or not (FALSE) |
Once you generate an estimate with this function, you can visualize
it with plot_proportion()
.
If you want to compare your estimate to a known value or reference, then
use estimate_pdiff_one()
.
The estimated proportions are from statpsych::ci.prop1()
(renamed
ci.prop as of statpsych 1.6).
Returns an object of class esci_estimate
overview
outcome_variable_name -
outcome_variable_level -
cases -
n -
P -
P_LL -
P_UL -
P_SE -
P_adjusted -
ta_LL -
ta_UL -
es_proportion
outcome_variable_name -
case_label -
effect -
effect_size -
LL -
UL -
SE -
effect_size_adjusted -
ta_LL -
ta_UL -
cases -
n -
# From raw data
data("data_campus_involvement")
estimate_from_raw <- esci::estimate_proportion(
esci::data_campus_involvement,
CommuterStatus
)
# To visualize the estimate
myplot_from_raw <- esci::plot_proportion(estimate_from_raw)
# From summary data
estimate_from_summary <- esci::estimate_proportion(
cases = c(8, 22-8),
outcome_variable_levels = c("Affected", "Not Affected")
)
# To visualize the estimate
myplot_from_summary<- esci::plot_proportion(estimate_from_summary)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.