Q_IS_uniGaussian: Q Importance Sampling Step

View source: R/univariate_Gaussian_fusion.R

Q_IS_uniGaussianR Documentation

Q Importance Sampling Step

Description

Q Importance Sampling weighting for univariate Gaussian distributions

Usage

Q_IS_uniGaussian(
  particle_set,
  m,
  time,
  means,
  sds,
  betas,
  precondition_values,
  diffusion_estimator = "Poisson",
  beta_NB = 10,
  gamma_NB_n_points = 2,
  seed = NULL,
  n_cores = parallel::detectCores()
)

Arguments

particle_set

particles set prior to Q importance sampling step

m

number of sub-posteriors to combine

time

time T for fusion algorithm

means

vector of length m, where means[c] is the mean for c-th sub-posterior

sds

vector of length m, where sds[c] is the standard deviation for c-th sub-posterior

betas

vector of length c, where betas[c] is the inverse temperature value for c-th posterior

precondition_values

vector of length m, where precondition_values[c] is the precondition value for sub-posterior c

diffusion_estimator

choice of unbiased estimator for the Exact Algorithm between "Poisson" (default) for Poisson estimator and "NB" for Negative Binomial estimator

beta_NB

beta parameter for Negative Binomial estimator (default 10)

gamma_NB_n_points

number of points used in the trapezoidal estimation of the integral found in the mean of the negative binomial estimator (default is 2)

seed

seed number - default is NULL, meaning there is no seed

n_cores

number of cores to use

Value

An updated particle set


rchan26/hierarchicalFusion documentation built on Sept. 11, 2022, 10:30 p.m.