View source: R/univariate_Gaussian_fusion.R
ea_uniGaussian_DL_PT | R Documentation |
Simulate Langevin diffusion using the Exact Algorithm where pi = tempered Gaussian distribution
ea_uniGaussian_DL_PT( x0, y, s, t, mean, sd, beta, precondition, diffusion_estimator = "Poisson", beta_NB = 10, gamma_NB_n_points = 2, logarithm )
x0 |
start value |
y |
end value |
s |
start time |
t |
end time |
mean |
mean value |
sd |
standard deviation value |
beta |
real value |
precondition |
precondition value (i.e. the covariance for the Langevin diffusion) |
diffusion_estimator |
choice of unbiased estimator for the Exact Algorithm between "Poisson" (default) for Poisson estimator and "NB" for Negative Binomial estimator |
beta_NB |
beta parameter for Negative Binomial estimator (default 10) |
gamma_NB_n_points |
number of points used in the trapezoidal estimation of the integral found in the mean of the negative binomial estimator (default is 2) |
logarithm |
logical value to determine if log probability is returned (TRUE) or not (FALSE) |
acceptance probability of simulating Langevin diffusion with pi = tempered Gaussian distribution
mu <- 0.423 sd <- 3.231 beta <- 0.8693 precondition <- 1.243 # Poisson estimator ea_uniGaussian_DL_PT(x0 = 0, y = 10, s = 0, t = 1, mean = mu, sd = sd, beta = beta, precondition = precondition, logarithm = TRUE) # NB estimator ea_uniGaussian_DL_PT(x0 = 0, y = 10, s = 0, t = 1, mean = mu, sd = sd, beta = beta, precondition = precondition, logarithm = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.