ea_uniGaussian_DL_PT: Diffusion probability for the Exact Algorithm for Langevin...

View source: R/univariate_Gaussian_fusion.R

ea_uniGaussian_DL_PTR Documentation

Diffusion probability for the Exact Algorithm for Langevin diffusion for tempered Gaussian distribution

Description

Simulate Langevin diffusion using the Exact Algorithm where pi = tempered Gaussian distribution

Usage

ea_uniGaussian_DL_PT(
  x0,
  y,
  s,
  t,
  mean,
  sd,
  beta,
  precondition,
  diffusion_estimator = "Poisson",
  beta_NB = 10,
  gamma_NB_n_points = 2,
  logarithm
)

Arguments

x0

start value

y

end value

s

start time

t

end time

mean

mean value

sd

standard deviation value

beta

real value

precondition

precondition value (i.e. the covariance for the Langevin diffusion)

diffusion_estimator

choice of unbiased estimator for the Exact Algorithm between "Poisson" (default) for Poisson estimator and "NB" for Negative Binomial estimator

beta_NB

beta parameter for Negative Binomial estimator (default 10)

gamma_NB_n_points

number of points used in the trapezoidal estimation of the integral found in the mean of the negative binomial estimator (default is 2)

logarithm

logical value to determine if log probability is returned (TRUE) or not (FALSE)

Value

acceptance probability of simulating Langevin diffusion with pi = tempered Gaussian distribution

Examples

mu <- 0.423
sd <- 3.231
beta <- 0.8693
precondition <- 1.243
# Poisson estimator
ea_uniGaussian_DL_PT(x0 = 0,
                     y = 10,
                     s = 0,
                     t = 1,
                     mean = mu,
                     sd = sd,
                     beta = beta,
                     precondition = precondition,
                     logarithm = TRUE)
# NB estimator
ea_uniGaussian_DL_PT(x0 = 0,
                     y = 10,
                     s = 0,
                     t = 1,
                     mean = mu,
                     sd = sd,
                     beta = beta,
                     precondition = precondition,
                     logarithm = TRUE)


rchan26/hierarchicalFusion documentation built on Sept. 11, 2022, 10:30 p.m.