# TOPTABLE.R
topTable <- function(fit,coef=NULL,number=10,genelist=fit$genes,adjust.method="BH",sort.by="B",resort.by=NULL,p.value=1,lfc=0,confint=FALSE)
# Summary table of top genes, object-orientated version
# Gordon Smyth
# 4 August 2003. Last modified 7 Dec 2013.
{
# Check fit
if(!is(fit,"MArrayLM")) stop("fit must be an MArrayLM object")
if(is.null(fit$coefficients)) stop("coefficients not found in fit object")
if(confint && is.null(fit$stdev.unscaled)) stop("stdev.unscaled not found in fit object")
if(is.null(coef)) coef <- 1:ncol(fit)
if(length(coef)>1) {
coef <- unique(coef)
if(length(fit$coef[1,coef]) < ncol(fit)) fit <- eBayes(fit[,coef])
if(sort.by=="B") sort.by <- "F"
return(topTableF(fit,number=number,genelist=genelist,adjust.method=adjust.method,sort.by=sort.by,p.value=p.value,lfc=lfc))
}
fit <- unclass(fit)
ebcols <- c("t","p.value","lods")
if(confint) ebcols <- c("s2.post","df.total",ebcols)
toptable(fit=fit[c("coefficients","stdev.unscaled")],
coef=coef,
number=number,
genelist=genelist,
A=fit$Amean,
eb=fit[ebcols],
adjust.method=adjust.method,
sort.by=sort.by,
resort.by=resort.by,
p.value=p.value,
lfc=lfc,
confint=confint)
}
topTableF <- function(fit,number=10,genelist=fit$genes,adjust.method="BH",sort.by="F",p.value=1,lfc=0)
# Summary table of top genes by F-statistic
# Gordon Smyth
# 27 August 2006. Last modified 4 November 2013.
{
# Check fit
if(is.null(fit$coefficients)) stop("Coefficients not found in fit")
M <- as.matrix(fit$coefficients)
rn <- rownames(M)
if(is.null(colnames(M))) colnames(M) <- paste("Coef",1:ncol(M),sep="")
Amean <- fit$Amean
Fstat <- fit$F
Fp <- fit$F.p.value
if(is.null(Fstat)) stop("F-statistics not found in fit")
# Ensure genelist is a data.frame
if(!is.null(genelist) && is.null(dim(genelist))) genelist <- data.frame(ProbeID=genelist,stringsAsFactors=FALSE)
# Check rownames
if(is.null(rn))
rn <- 1:nrow(M)
else
if(anyDuplicated(rn)) {
if(is.null(genelist))
genelist <- data.frame(ID=rn,stringsAsFactors=FALSE)
else
if("ID" %in% names(genelist))
genelist$ID0 <- rn
else
genelist$ID <- rn
rn <- 1:nrow(M)
}
# Check sort.by
sort.by <- match.arg(sort.by,c("F","none"))
# Apply multiple testing adjustment
adj.P.Value <- p.adjust(Fp,method=adjust.method)
# Thin out fit by lfc and p.value thresholds
if(lfc > 0 || p.value < 1) {
if(lfc>0)
big <- rowSums(abs(M)>lfc,na.rm=TRUE)>0
else
big <- TRUE
if(p.value<1) {
sig <- adj.P.Value <= p.value
sig[is.na(sig)] <- FALSE
} else
sig <- TRUE
keep <- big & sig
if(!all(keep)) {
M <- M[keep,,drop=FALSE]
rn <- rn[keep]
Amean <- Amean[keep]
Fstat <- Fstat[keep]
Fp <- Fp[keep]
genelist <- genelist[keep,,drop=FALSE]
adj.P.Value <- adj.P.Value[keep]
}
}
# Enough rows left?
if(nrow(M) < number) number <- nrow(M)
if(number < 1) return(data.frame())
# Find rows of top genes
if(sort.by=="F")
o <- order(Fp,decreasing=FALSE)[1:number]
else
o <- 1:number
# Assemble data.frame
if(is.null(genelist))
tab <- data.frame(M[o,,drop=FALSE])
else
tab <- data.frame(genelist[o,,drop=FALSE],M[o,,drop=FALSE])
tab$AveExpr=fit$Amean[o]
tab <- data.frame(tab,F=Fstat[o],P.Value=Fp[o],adj.P.Val=adj.P.Value[o])
rownames(tab) <- rn[o]
tab
}
toptable <- function(fit,coef=1,number=10,genelist=NULL,A=NULL,eb=NULL,adjust.method="BH",sort.by="B",resort.by=NULL,p.value=1,lfc=0,confint=FALSE,...)
# Summary table of top genes
# Gordon Smyth
# 21 Nov 2002. Last revised 7 Dec 2013.
{
# Check fit
fit$coefficients <- as.matrix(fit$coefficients)
rn <- rownames(fit$coefficients)
# Check coef is length 1
if(length(coef)>1) {
coef <- coef[1]
warning("Treat is for single coefficients: only first value of coef being used")
}
# Ensure genelist is a data.frame
if(!is.null(genelist) && is.null(dim(genelist))) genelist <- data.frame(ID=genelist,stringsAsFactors=FALSE)
# Check rownames
if(is.null(rn))
rn <- 1:nrow(fit$coefficients)
else
if(anyDuplicated(rn)) {
if(is.null(genelist))
genelist <- data.frame(ID=rn,stringsAsFactors=FALSE)
else
if("ID" %in% names(genelist))
genelist$ID0 <- rn
else
genelist$ID <- rn
rn <- 1:nrow(fit$coefficients)
}
# Check sort.by
sort.by <- match.arg(sort.by,c("logFC","M","A","Amean","AveExpr","P","p","T","t","B","none"))
if(sort.by=="M") sort.by="logFC"
if(sort.by=="A" || sort.by=="Amean") sort.by <- "AveExpr"
if(sort.by=="T") sort.by <- "t"
if(sort.by=="p") sort.by <- "P"
# Check resort.by
if(!is.null(resort.by)) {
resort.by <- match.arg(resort.by,c("logFC","M","A","Amean","AveExpr","P","p","T","t","B"))
if(resort.by=="M") resort.by <- "logFC"
if(resort.by=="A" || resort.by=="Amean") resort.by <- "AveExpr"
if(resort.by=="p") resort.by <- "P"
if(resort.by=="T") resort.by <- "t"
}
# Check A
if(is.null(A)) {
if(sort.by=="A") stop("Cannot sort by A-values as these have not been given")
} else {
if(NCOL(A)>1) A <- rowMeans(A,na.rm=TRUE)
}
# Compute eb if not given, compute just the one column required
if(is.null(eb)) {
fit$coefficients <- fit$coefficients[,coef,drop=FALSE]
fit$stdev.unscaled <- as.matrix(fit$stdev.unscaled)[,coef,drop=FALSE]
eb <- ebayes(fit,...)
coef <- 1
}
# Check for lods compoent
if(is.null(eb$lods)) {
if(sort.by=="B") stop("Trying to sort.by B, but B-statistic (lods) not found in MArrayLM object",.call=FALSE)
if(!is.null(resort.by)) if(resort.by=="B") stop("Trying to resort.by B, but B-statistic (lods) not found in MArrayLM object",.call=FALSE)
include.B <- FALSE
} else {
include.B <- TRUE
}
# Extract statistics for table
M <- fit$coefficients[,coef]
tstat <- as.matrix(eb$t)[,coef]
P.Value <- as.matrix(eb$p.value)[,coef]
if(include.B) B <- as.matrix(eb$lods)[,coef]
# Apply multiple testing adjustment
adj.P.Value <- p.adjust(P.Value,method=adjust.method)
# Thin out fit by p.value and lfc thresholds
if(p.value < 1 | lfc > 0) {
sig <- (adj.P.Value < p.value) & (abs(M) > lfc)
if(any(is.na(sig))) sig[is.na(sig)] <- FALSE
if(all(!sig)) return(data.frame())
genelist <- genelist[sig,,drop=FALSE]
M <- M[sig]
A <- A[sig]
tstat <- tstat[sig]
P.Value <- P.Value[sig]
adj.P.Value <- adj.P.Value[sig]
if(include.B) B <- B[sig]
rn <- rn[sig]
}
# Are enough rows left?
if(length(M) < number) number <- length(M)
if(number < 1) return(data.frame())
# Select top rows
ord <- switch(sort.by,
logFC=order(abs(M),decreasing=TRUE),
AveExpr=order(A,decreasing=TRUE),
P=order(P.Value,decreasing=FALSE),
t=order(abs(tstat),decreasing=TRUE),
B=order(B,decreasing=TRUE),
none=1:length(M)
)
top <- ord[1:number]
# Assemble output data.frame
if(is.null(genelist))
tab <- data.frame(logFC=M[top])
else {
tab <- data.frame(genelist[top,,drop=FALSE],logFC=M[top],stringsAsFactors=FALSE)
}
if(confint) {
margin.error <- sqrt(eb$s2.post[top])*fit$stdev.unscaled[top]*qnorm(0.975)
tab$CI.025 <- M[top]-margin.error
tab$CI.975 <- M[top]+margin.error
}
if(!is.null(A)) tab$AveExpr <- A[top]
tab <- data.frame(tab,t=tstat[top],P.Value=P.Value[top],adj.P.Val=adj.P.Value[top])
if(include.B) tab$B <- B[top]
rownames(tab) <- rn[top]
# Resort table
if(!is.null(resort.by)) {
ord <- switch(resort.by,
logFC=order(tab$logFC,decreasing=TRUE),
AveExpr=order(tab$AveExpr,decreasing=TRUE),
P=order(tab$P.Value,decreasing=FALSE),
t=order(tab$t,decreasing=TRUE),
B=order(tab$B,decreasing=TRUE)
)
tab <- tab[ord,]
}
tab
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.