context("classif_h2oglm")
test_that("classif_h2oglm", {
skip_on_travis()
requirePackages("h2o", default.method = "load")
h2o::h2o.init()
parset.list = list(
list(),
list(alpha = 1),
list(alpha = 1, lambda = 0.2)
)
old.probs.list = list()
for (i in seq_along(parset.list)) {
parset = parset.list[[i]]
parset = c(parset, list(x = colnames(binaryclass.train[, -binaryclass.class.col]),
y = binaryclass.target, family = "binomial",
training_frame = h2o::as.h2o(binaryclass.train)))
set.seed(getOption("mlr.debug.seed"))
m = do.call(h2o::h2o.glm, parset)
p = predict(m, newdata = h2o::as.h2o(binaryclass.test))
old.probs.list[[i]] = as.data.frame(p)[, 2]
}
testProbParsets("classif.h2o.glm", binaryclass.df, binaryclass.target, binaryclass.train.inds, old.probs.list, parset.list)
})
test_that("class names are integers and probabilities predicted (#1787)", {
df = data.frame(matrix(runif(100, 0, 1), 100, 9))
classx = factor(sample(c(0, 1), 100, replace = TRUE))
df = cbind(classx, df)
classif.task = makeClassifTask(id = "example", data = df, target = "classx")
gb.lrn = makeLearner("classif.h2o.glm", predict.type = "prob")
rdesc = makeResampleDesc("CV", iters = 3, stratify = TRUE)
rin = makeResampleInstance(rdesc, task = classif.task)
r = resample(gb.lrn, classif.task, rin)
expect_false(is.null(r$pred))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.