context("regr_h2odeeplearning")
test_that("regr_h2odeeplearning", {
skip_on_travis()
requirePackages("h2o", default.method = "load")
h2o::h2o.init()
parset.list = list(
list(),
list(distribution = "gaussian"),
list(distribution = "quantile", quantile_alpha = 0.2),
list(distribution = "tweedie", tweedie_power = 1.2)
)
#h20deeplearning needs seed in function call to be reproducible
debug.seed = getOption("mlr.debug.seed")
parset.list = lapply(parset.list, function(x) c(x, seed = debug.seed, reproducible = TRUE))
old.predicts.list = list()
for (i in seq_along(parset.list)) {
parset = parset.list[[i]]
parset = c(parset, list(x = colnames(regr.train[, -regr.class.col]),
y = regr.target,
training_frame = h2o::as.h2o(regr.train)))
set.seed(getOption("mlr.debug.seed"))
m = do.call(h2o::h2o.deeplearning, parset)
p = predict(m, newdata = h2o::as.h2o(regr.test))
old.predicts.list[[i]] = as.data.frame(p)[, 1L]
}
testSimpleParsets("regr.h2o.deeplearning", regr.df, regr.target, regr.train.inds, old.predicts.list, parset.list)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.