#' Classify `morph_mvt` nad calculates densities
#'
#' @param morph_mvt merged track data - one row per particle
#' @param classifiers_constant constant tempersture classifier
#' @param classifiers_increasing increasing temperature classifier
#'
#' @return `morph_mvt` with the classified species and probabilities
#' @export
#'
#' @md
#'
#' @examples
classify <- function(
bemovi_extract,
morph_mvt,
trajectory_data,
classifiers_constant,
classifiers_increasing,
video_description_file,
composition
){
bemovi.LEEF::load_parameter(bemovi_extract)
# 2. Make a list of 32 dataframes: split morph_mvt based on species combination and temperature regime
morph_mvt_list <- split(
x = morph_mvt,
f = interaction(morph_mvt$composition_id, morph_mvt$temperature_treatment),
drop = TRUE
)
# 3. Predict species identities in the 32 dfs based on the 32 rf classifiers
for (i in seq_along(morph_mvt_list)) {
message(" classifying ", i)
df <- morph_mvt_list[[i]]
temperature_treatment <- unique(df$temperature_treatment) # either "constant" or "increasing"
composition_id <- unique(df$composition_id) # a char between c_01 and c_16
noNAs <- !rowSums(is.na(df)) > 0
if (temperature_treatment == "constant"){
pr <- predict(classifiers_constant[[composition_id]], df, probability = TRUE)
df$species[noNAs] <- as.character(pr) # species prediction
df$species_probability[noNAs] <- apply(attributes(pr)$probabilities,1,max) # probability of each species prediction
probabilities <- attributes(pr)$probabilities
colnames(probabilities) <- paste0(colnames(probabilities),"_prob")
if (sum(!noNAs) == 0){
df <- cbind(df, probabilities)
} else {
df_noNAs <- cbind(df[noNAs,], probabilities)
probabilities[] <- NA
while (nrow(probabilities) < sum(!noNAs)) {
probabilities <- rbind(probabilities, NA)
}
df_NAs <- cbind(df[!noNAs,], as.data.frame(probabilities)[1:sum(!noNAs),])
df <- rbind(df_noNAs, df_NAs)
}
} else {
pr <- predict(classifiers_increasing[[composition_id]], df, probability = TRUE)
df$species[noNAs] <- as.character(pr) # species prediction
df$species_probability[noNAs] <- apply(attributes(pr)$probabilities,1,max) # probability of each species prediction
probabilities <- attributes(pr)$probabilities
colnames(probabilities) <- paste0(colnames(probabilities),"_prob")
if (sum(!noNAs) == 0){
df <- cbind(df, probabilities)
} else {
df_noNAs <- cbind(df[noNAs,], probabilities)
probabilities[] <- NA
while (nrow(probabilities) < sum(!noNAs)) {
probabilities <- rbind(probabilities, NA)
}
df_NAs <- cbind(df[!noNAs,], as.data.frame(probabilities)[1:sum(!noNAs),])
df <- rbind(df_noNAs, df_NAs)
}
}
morph_mvt_list[[i]] <- df
}
# 4. Merge the 32 dfs back into a single df: morph_mvt
morph_mvt <- purrr::reduce(morph_mvt_list, dplyr::full_join)
# 5. Add species identity to trajectory_data
take_all <- data.table::as.data.table(morph_mvt)
take_all <- take_all[, list(id, species)]
data.table::setkey(take_all, id)
data.table::setkey(trajectory_data, id)
trajectory_data <- trajectory_data[take_all]
ispecies_column <- which(names(trajectory_data) == "i.species")
if (length(ispecies_column) > 0){
trajectory_data$species <- trajectory_data$i.species
trajectory_data <- subset(trajectory_data, select = -ispecies_column)
}
trajectory_data$predict_spec <- trajectory_data$species # needed for overlays
empty_videos_ind <- which(!is.element(video_description_file$file, unique(trajectory_data$file)))
if (length(empty_videos_ind) > 0) {
empty_videos <- video_description_file[empty_videos_ind,]
dummy_rows <- trajectory_data[1:nrow(empty_videos),]
dummy_rows <- dplyr::left_join(empty_videos, dummy_rows, by=colnames(empty_videos))
dummy_rows$frame <- 1
dummy_rows$species <- "dummy_species"
trajectory_data <- rbind(trajectory_data, dummy_rows)
}
# density for each frame in each sample
area_org <- bemovi.LEEF::par_width() * bemovi.LEEF::par_height()
area_crop <-
(
max(
bemovi.LEEF::par_crop_pixels()$xmin, 0) - min(bemovi.LEEF::par_crop_pixels()$xmax,
bemovi.LEEF::par_width())
) * (
max(
bemovi.LEEF::par_crop_pixels()$ymin, 0) - min(bemovi.LEEF::par_crop_pixels()$ymax,
bemovi.LEEF::par_height()
)
)
cropping.factor <- area_org / area_crop
count_per_frame <- trajectory_data %>%
group_by(
file,
date,
species,
bottle,
composition_id,
temperature_treatment,
magnification,
sample,
video,
frame,
dilution_factor
) %>%
summarise(count = n()) %>%
mutate(dens.ml = count * bemovi.LEEF::par_extrapolation.factor() * cropping.factor * dilution_factor)
mean_density_per_ml <- count_per_frame %>%
group_by(
date,
species,
composition_id,
bottle,
temperature_treatment,
magnification,
sample
) %>%
summarise(
numberOfVideos = 3, # length(unique(file)),
density = sum(dens.ml) / (numberOfVideos * 125)
) %>%
mutate(numberOfVideos = NULL)
# previously: 'density = mean(dens.ml)'
# -----------------------------------------------------------------------------------------------------
# add density = 0 for extinct species ------------------------------------------------------------
# magnification & cropping specific!
comp_id <- unique(composition$composition)
composition <- composition %>%
dplyr::select(tidyselect::any_of(bemovi.LEEF::par_species_tracked()))
composition.list <- apply(composition, 1, function(x) {
idx <- which(x == 1)
names(idx)
})
names(composition.list) <- comp_id
mean_density_per_ml_list <- split(x = mean_density_per_ml,
f = mean_density_per_ml$bottle,
drop = T)
for (i in seq_along(mean_density_per_ml_list)) {
df <- mean_density_per_ml_list[[i]]
ID <- unique(df$composition_id)
idx <- which(!is.element(unlist(composition.list[[ID]]), df$species))
if (length(idx) == 0) next
for (j in idx) {
if (composition.list[[ID]][j] %in% bemovi.LEEF::par_species_tracked()) {
new.entry <- utils::tail(df, 1)
new.entry$species <- composition.list[[ID]][j]
new.entry$density <- 0
df <- rbind(df, new.entry)
}
mean_density_per_ml_list[[i]] <- df
}
}
mean_density_per_ml <- do.call("rbind", mean_density_per_ml_list) %>%
dplyr::filter(species %in% bemovi.LEEF::par_species_tracked())
### TO CHECK IF CAN BE DONE EARLIER
morph_mvt <- morph_mvt %>%
dplyr::filter(species %in% bemovi.LEEF::par_species_tracked())
###
trajectory_data <- trajectory_data %>%
dplyr::filter(species %in% bemovi.LEEF::par_species_tracked())
return(
list(
morph_mvt = morph_mvt,
trajectory_data = trajectory_data,
mean_density_per_ml = mean_density_per_ml
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.