#' @rdname parse_
parse_pubmed <- function(x){
x <- prep_ris(x, detect_delimiter(x), type = "pubmed")
x_merge <- merge(x,
synthesisr::code_lookup[
synthesisr::code_lookup$ris_pubmed,
c("code", "order", "field")
],
by.x = "ris",
by.y = "code",
all.x = TRUE,
all.y = FALSE
)
x_merge <- x_merge[order(x_merge$row_order), ]
# find a way to store missing .bib data rather than discard
if(any(is.na(x_merge$field))){
rows_tr <- which(is.na(x_merge$field))
x_merge$field[rows_tr] <- x_merge$ris[rows_tr]
# ensure all headings have an order
if(all(is.na(x_merge$order))){
start_val <- 0
}else{
start_val <- max(x_merge$order, na.rm = TRUE)
}
x_merge$order[rows_tr] <- as.numeric(as.factor(x_merge$ris[rows_tr])) + start_val
}
# convert into a list, where each reference is a separate entry
x_split <- split(x_merge[c("field", "text", "order")], x_merge$ref)
x_final <- lapply(x_split, function(a){
result <- split(a$text, a$field)
if(any(names(result) == "abstract")){
result$abstract <- paste(result$abstract, collapse = " ")
}
if(any(names(result) == "address")){
result$address <- strsplit(
paste(result$address, collapse = " "),
"\\.\\s"
)[[1]]
}
if(any(names(result) == "title")){
if(length(result$title) > 1){
result$title <- paste(result$title, collapse = " ")
}
}
if(any(names(result) == "term_other")){
names(result)[which(names(result) == "term_other")] <- "keywords"
}
if(any(names(result) == "date_published")){
result$year <- substr(result$date_published, start = 1, stop = 4)
}
if(any(names(result) == "article_id")){
doi_check <- grepl("doi", result$article_id)
if(any(doi_check)){
result$doi <- strsplit(result$article_id[which(doi_check)], " ")[[1]][1]
}
}
# ensure result is returned in the correct order
result_order <- order(
unlist(lapply(split(a$order, a$field), function(b){b[1]}))
)
return(result[result_order])
})
names(x_final) <- unlist(lapply(x_final, function(a){a$pubmed_id}))
class(x_final) <- "bibliography"
return(x_final)
}
#' @rdname parse_
#' @param tag_naming What format are ris tags in? Defaults to "best_guess" See \code{\link{read_refs}} for a list of accepted arguments.
parse_ris <- function(x, tag_naming = "best_guess"){
x <- prep_ris(x, detect_delimiter(x), type = "generic")
# create the appropriate lookup file for the specified tag
if(inherits(tag_naming, "data.frame")){
if(!any(colnames(tag_naming) == "order")){
tag_naming$order <- seq_len(nrow(tag_naming))
}
code_lookup_thisfile <- tag_naming
}else{
if(tag_naming == "none"){
ris_vals <- unique(x$ris)
code_lookup_thisfile <- data.frame(
code = ris_vals,
field = ris_vals,
order = seq_along(ris_vals),
stringsAsFactors = FALSE
)
}else if(tag_naming == "best_guess"){
code_lookup_thisfile <- detect_lookup(tags = unique(x$ris))
}else if(any(c("wos", "scopus", "ovid", "asp", "synthesisr") == tag_naming)){
rows <- which(synthesisr::code_lookup[, paste0("ris_", tag_naming)])
code_lookup_thisfile <- synthesisr::code_lookup[
rows,
c("code", "order", "field")
]
}
}
# merge data with lookup info, to provide bib-style tags
x_merge <- merge(x,
code_lookup_thisfile,
by.x = "ris",
by.y = "code",
all.x = TRUE,
all.y = FALSE
)
x_merge <- x_merge[order(x_merge$row_order), ]
# find a way to store missing .bib data rather than discard
if(any(is.na(x_merge$field))){
rows_tr <- which(is.na(x_merge$field))
x_merge$field[rows_tr] <- x_merge$ris[rows_tr]
# ensure all headings have an order
if(all(is.na(x_merge$order))){
start_val <- 0
}else{
start_val <- max(x_merge$order, na.rm = TRUE)
}
x_merge$order[rows_tr] <- as.numeric(as.factor(x_merge$ris[rows_tr])) + start_val
}
# method to systematically search for year data
year_check <- regexpr("^\\d{4}$", x_merge$text)
if(any(year_check > 0)){
check_rows <- which(year_check > 0)
year_strings <- as.numeric(x_merge$text[check_rows])
# for entries with a bib entry labelled year, check that there arent multiple years
if(any(x_merge$field[check_rows] == "year", na.rm = TRUE)){
# check for repeated year information
year_freq <- xtabs(~ ref, data = x_merge[which(x_merge$field == "year"), ])
if(any(year_freq > 1)){
year_df <- x_merge[which(x_merge$field == "year"), ]
year_list <- split(nchar(year_df$text), year_df$ris)
year_4 <- sqrt((4 - unlist(lapply(year_list, mean))) ^ 2)
# rename bib entries that have >4 characters to 'year_additional'
incorrect_rows <- which(
x_merge$ris != names(which.min(year_4)[1]) &
x_merge$field == "year"
)
x_merge$field[incorrect_rows] <- "year_additional"
}
}else{
possible_rows <- which(
year_strings > 0 &
year_strings <= as.numeric(format(Sys.Date(), "%Y")) + 1
)
tag_frequencies <- as.data.frame(
xtabs(~ x_merge$ris[check_rows[possible_rows]]),
stringsAsFactors = FALSE
)
colnames(tag_frequencies) <- c("tag", "n")
# now work out what proportion of each tag contain year data
# compare against number of references to determine likelihood of being 'the' year tag
tag_frequencies$prop <- tag_frequencies$n/(max(x_merge$ref)+1) # number of references
if(any(tag_frequencies$prop > 0.9)){
year_tag <- tag_frequencies$tag[which.max(tag_frequencies$prop)]
rows.tr <- which(x_merge$ris == year_tag)
x_merge$field[rows.tr] <- "year"
x_merge$row_order[rows.tr] <- 3
}
}
}
# ensure author data from a single ris tag
if(any(x_merge$field == "author")){
lookup.tags <- xtabs( ~ x_merge$ris[which(x_merge$field == "author")])
if(length(lookup.tags) > 1){
replace_tags <- names(which(lookup.tags < max(lookup.tags)))
replace_rows <- which(x_merge$ris %in% replace_tags)
x_merge$field[replace_rows] <- x_merge$ris[replace_rows]
if(all(is.na(x_merge$row_order))){
start_val <- 0
}else{
start_val <- max(x_merge$row_order, na.rm = TRUE)
}
x_merge$row_order[replace_rows] <- start_val + as.numeric(
as.factor(x_merge$ris[replace_rows])
)
}
}
# convert into a list, where each reference is a separate entry
x_split <- split(x_merge[c("field", "ris", "text", "order")], x_merge$ref)
# there is an issue with date accessed creating non-existing records
# removing datasets with 1 row fixes this
if(any(unlist(lapply(x_split, nrow))==1)){
x_split <- x_split[ -which(unlist(lapply(x_split, nrow))==1)]
}
# convert to list format
x_final <- lapply(x_split, function(a){
result <- split(a$text, a$field)
# YEAR
if(any(names(result) == "year")){
if(any(nchar(result$year) >= 4)){
year_check <- regexpr("\\d{4}", result$year)
if(any(year_check > 0)){
result$year <- substr(
x = result$year[which(year_check>0)],
start = year_check[1],
stop = year_check[1]+3
)
}else{
result$year <- ""
}
}else{
result$year <- ""
}
}
# TITLE
if(any(names(result) == "title")){
if(length(result$title) > 1){
if(result$title[1] == result$title[2]){
result$title <- result$title[1]
}else{
result$title <- paste(result$title, collapse = " ")
}
}
result$title <- gsub("\\s+", " ", result$title) # remove multiple spaces
result$title <- sub("\\.$", "", result$title) # remove final full stops
}
# JOURNAL
if(any(names(result) == "journal")){
unique_journals <- unique(result$journal)
if(length(unique_journals)>1){
unique_journals <- unique_journals[order(
nchar(unique_journals),
decreasing = FALSE
)]
result$journal <- unique_journals[1]
result$journal_secondary <- paste(
unique_journals[c(2:length(unique_journals))],
collapse = "; "
)
}else{
result$journal <- unique_journals
}
result$journal <-gsub(" ", " ", result$journal)
result$journal <-sub("\\.$", "", result$journal)
}
# ABSTRACT
if(length(result$abstract > 1)){
result$abstract <- paste(result$abstract, collapse = " ")
result$abstract <- gsub("\\s+", " ", result$abstract) # remove multiple spaces
}
# PAGE NUMBER
if(any(names(result) == "pages")){
if(length(result$pages) > 1){
result$pages <- paste(sort(result$pages), collapse = "-")
}
}
# ensure result is returned in the correct order
result_order <- order(
unlist(lapply(split(a$order, a$field), function(b){b[1]}))
)
return(result[result_order])
})
# names(x_final) <- seq_along(x_final)
class(x_final) <- "bibliography"
return(x_final)
}
#' @rdname parse_
parse_bibtex <- function(x){
### Remove lines that start with a percentage symbol (comments)
x <- grep("^\\s*%.*",
x,
invert = TRUE,
value=TRUE)
# which lines start with @article?
group_vec <- rep(0, length(x))
row_id <- which(regexpr("^@", x) == 1)
group_vec[row_id] <- 1
group_vec <- cumsum(group_vec)
# work out row names
ref_names <- gsub(".*\\{|,$", "", x[row_id])
ref_type <- gsub(".*@|\\{.*", "", x[row_id])
# split by reference
x_split <- split(x[-row_id], group_vec[-row_id])
length_vals <- unlist(lapply(x_split, length))
x_split <- x_split[which(length_vals > 3)]
x_final <- lapply(x_split, function(z){
# first use a stringent lookup term to locate only tagged rows
delimiter_lookup <- regexpr(
"^[[:blank:]]*([[:alnum:]]|[[:punct:]])+[[:blank:]]*=[[:blank:]]*\\{+",
z
)
delimiter_rows <- which(delimiter_lookup != -1)
other_rows <- which(delimiter_lookup == -1)
delimiters <- data.frame(
row = delimiter_rows,
location = regexpr("=", z[delimiter_rows])
)
split_tags <- apply(delimiters, 1, function(a, lookup){
c(
row = as.numeric(a[1]),
tag = substr(
x = lookup[a[1]],
start = 1,
stop = a[2] - 1
),
value = substr(
x = lookup[a[1]],
start = a[2] + 1,
stop = nchar(lookup[a[1]])
)
)
},
lookup = z
)
entry_dframe <- rbind(
as.data.frame(
t(split_tags),
stringsAsFactors = FALSE
),
data.frame(
row = other_rows,
tag = NA,
value = z[other_rows],
stringsAsFactors = FALSE
)
)
entry_dframe$row <- as.numeric(entry_dframe$row)
entry_dframe <- entry_dframe[order(entry_dframe$row), c("tag", "value")]
if(any(entry_dframe$value == "}")){
entry_dframe <- entry_dframe[seq_len(which(entry_dframe$value == "}")[1]-1), ]
}
if(any(entry_dframe$value == "")){
entry_dframe <- entry_dframe[-which(entry_dframe$value == ""), ]
}
# remove whitespace
entry_dframe <- as.data.frame(
lapply(entry_dframe, trimws),
stringsAsFactors = FALSE
)
# remove 1 or more opening brackets
entry_dframe$value <- gsub("^\\{+", "", entry_dframe$value)
# remove 1 or more closing brackets followed by zero or more punctuation marks
entry_dframe$value <- gsub("\\}+[[:punct:]]*$", "", entry_dframe$value)
# convert each entry to a list
label_group <- rep(0, nrow(entry_dframe))
tag_rows <- which(entry_dframe$tag != "")
label_group[tag_rows] <- 1
tag_names <- entry_dframe$tag[tag_rows]
entry_list <- split(
entry_dframe$value,
cumsum(label_group)+1
)
names(entry_list) <- tolower(
gsub("^\\s+|\\s+$", "", tag_names)
)
entry_list <- lapply(entry_list,
function(a){paste(a, collapse = " ")}
)
if(any(names(entry_list) == "author")){
if(length(entry_list$author) == 1){
entry_list$author <- strsplit(entry_list$author, " and ")[[1]]
}
}
return(entry_list)
})
# add type
x_final <- lapply(
seq_len(length(x_final)),
function(a, type, data){
c(type = type[a], data[[a]])
},
type = ref_type,
data = x_final
)
names(x_final) <- ref_names
class(x_final) <- "bibliography"
return(x_final)
}
#' @rdname parse_
parse_csv <- function(x){
z <- read.table(
text = x,
header = TRUE,
sep = ",",
quote = "\"",
dec = ".",
fill = TRUE,
stringsAsFactors = FALSE, row.names = NULL
)
return(match_columns(z))
}
#' @rdname parse_
parse_tsv <- function(x){
z <- read.table(
text = x,
header = TRUE,
sep = "\t",
quote = "\"",
dec = ".",
fill = TRUE,
stringsAsFactors = FALSE, row.names = NULL
)
return(match_columns(z))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.