prettySeq <- function (x) {
paste("Resample", gsub(" ", "0", format(seq(along = x))), sep = "")
}
zeroVar <- function (x) {
x <- x[, colnames(x) != ".outcome", drop = FALSE]
which(apply(x, 2, function(x) length(unique(x)) < 2))
}
nzv <- function (x, freqCut = 95/5, uniqueCut = 10, saveMetrics = FALSE) {
if (is.vector(x))
x <- matrix(x, ncol = 1)
freqRatio <- apply(x, 2, function(data) {
t <- table(data[!is.na(data)])
if (length(t) <= 1) {
return(0)
}
w <- which.max(t)
return(max(t, na.rm = TRUE)/max(t[-w], na.rm = TRUE))
})
lunique <- apply(x, 2, function(data) length(unique(data[!is.na(data)])))
percentUnique <- 100 * lunique/apply(x, 2, length)
zeroVar <- (lunique == 1) | apply(x, 2, function(data) all(is.na(data)))
if (saveMetrics) {
out <- data.frame(freqRatio = freqRatio, percentUnique = percentUnique,
zeroVar = zeroVar, nzv = (freqRatio > freqCut & percentUnique <=
uniqueCut) | zeroVar)
}
else {
out <- which((freqRatio > freqCut & percentUnique <=
uniqueCut) | zeroVar)
names(out) <- NULL
}
out
}
#' Data Splitting Functions
#' A series of test/training partitions are created using
#' 'createDataPartition' while 'createResample' creates one or more
#' bootstrap samples. 'createFolds' splits the data into 'k' groups
#' while 'createTimeSlices' creates cross-validation sample
#' information to be used with time series data.
#'
#' Check out documentation for `caret::createFolds`
#'
#' @seealso \code{nearZeroVar} in the caret package.
#' @param y data.frame.
#' @param times integer.
#' @param p numeric.
#' @param list logical.
#' @param groups numeric.
#' @importFrom plyr dlply .
#' @export
createDataPartition <- function (y, times = 1, p = 0.5, list = TRUE, groups = min(5, length(y))) {
out <- vector(mode = "list", times)
if (length(y) < 2)
stop("y must have at least 2 data points")
if (groups < 2)
groups <- 2
if (is.numeric(y)) {
y <- cut(y, unique(quantile(y, probs = seq(0, 1, length = groups))),
include.lowest = TRUE)
}
else {
xtab <- table(y)
if (any(xtab == 0)) {
warning(paste("Some classes have no records (", paste(names(xtab)[xtab ==
0], sep = "", collapse = ", "), ") and these will be ignored"))
y <- factor(as.character(y))
}
if (any(xtab == 1)) {
warning(paste("Some classes have a single record (",
paste(names(xtab)[xtab == 1], sep = "", collapse = ", "),
") and these will be selected for the sample"))
}
}
subsample <- function(dat, p) {
if (nrow(dat) == 1) {
out <- dat$index
}
else {
num <- ceiling(nrow(dat) * p)
out <- sample(dat$index, size = num)
}
out
}
for (j in 1:times) {
tmp <- plyr::dlply(data.frame(y = y, index = seq(along = y)),
.(y), subsample, p = p)
tmp <- sort(as.vector(unlist(tmp)))
out[[j]] <- tmp
}
if (!list) {
out <- matrix(unlist(out), ncol = times)
colnames(out) <- prettySeq(1:ncol(out))
}
else {
names(out) <- prettySeq(out)
}
out
}
#' Identification of near zero variance predictors
#'
#' @seealso \code{nearZeroVar} in the caret package.
#' @param x data.frame.
#' @param freqCut numeric.
#' @param uniqueCut integer.
#' @param saveMetrics logical.
#' @param foreach logical.
#' @param allowParallel logical.
#' @export
nearZeroVar <- function (x, freqCut = 95/5, uniqueCut = 10, saveMetrics = FALSE, foreach = FALSE, allowParallel = TRUE) {
if (!foreach)
return(nzv(x, freqCut = freqCut, uniqueCut = uniqueCut,
saveMetrics = saveMetrics))
`%op%` <- getOper(foreach && allowParallel && getDoParWorkers() >
1)
if (saveMetrics) {
res <- foreach(name = colnames(x), .combine = rbind) %op%
{
r <- nzv(x[[name]], freqCut = freqCut, uniqueCut = uniqueCut,
saveMetrics = TRUE)
r[, "column"] <- name
r
}
res <- res[, c(5, 1, 2, 3, 4)]
rownames(res) <- as.character(res$column)
res$column <- NULL
}
else {
res <- foreach(name = colnames(x), .combine = c) %op%
{
nzv(x[[name]], freqCut = freqCut, uniqueCut = uniqueCut,
saveMetrics = FALSE)
}
}
res
}
#' Create cross validation folds.
#'
#' @param y vector. A vector of stuff.
#' @param k integer. Number of folds.
#' @param list logical. Whether or not to return a list.
#' @param returnTrain logical. Whether or not to return the train data.
#' @export
createFolds <-
function(y, k = 10, list = TRUE, returnTrain = FALSE) {
if(class(y)[1] == "Surv") y <- y[,"time"]
if(is.numeric(y)) {
## Group the numeric data based on their magnitudes
## and sample within those groups.
## When the number of samples is low, we may have
## issues further slicing the numeric data into
## groups. The number of groups will depend on the
## ratio of the number of folds to the sample size.
## At most, we will use quantiles. If the sample
## is too small, we just do regular unstratified
## CV
cuts <- floor(length(y)/k)
if(cuts < 2) cuts <- 2
if(cuts > 5) cuts <- 5
breaks <- unique(quantile(y, probs = seq(0, 1, length = cuts)))
y <- cut(y, breaks, include.lowest = TRUE)
}
if(k < length(y)) {
## reset levels so that the possible levels and
## the levels in the vector are the same
y <- factor(as.character(y))
numInClass <- table(y)
foldVector <- vector(mode = "integer", length(y))
## For each class, balance the fold allocation as far
## as possible, then resample the remainder.
## The final assignment of folds is also randomized.
for(i in 1:length(numInClass)) {
## create a vector of integers from 1:k as many times as possible without
## going over the number of samples in the class. Note that if the number
## of samples in a class is less than k, nothing is producd here.
min_reps <- numInClass[i] %/% k
if(min_reps > 0) {
spares <- numInClass[i] %% k
seqVector <- rep(1:k, min_reps)
## add enough random integers to get length(seqVector) == numInClass[i]
if(spares > 0) seqVector <- c(seqVector, sample(1:k, spares))
## shuffle the integers for fold assignment and assign to this classes's data
foldVector[which(y == names(numInClass)[i])] <- sample(seqVector)
} else {
## Here there are less records in the class than unique folds so
## randomly sprinkle them into folds.
foldVector[which(y == names(numInClass)[i])] <- sample(1:k, size = numInClass[i])
}
}
} else foldVector <- seq(along = y)
if(list) {
out <- split(seq(along = y), foldVector)
names(out) <- paste("Fold", gsub(" ", "0", format(seq(along = out))), sep = "")
if(returnTrain) out <- lapply(out, function(data, y) y[-data], y = seq(along = y))
} else out <- foldVector
out
}
#' Create multi folds.
#'
#' @param y vector. A vector of stuff.
#' @param k integer. Number of folds.
#' @param times integer. Number of times.
#' @return The result of calling \code{\link{createFolds}} on each split.
#' @export
createMultiFolds <- function(y, k = 10, times = 5) {
if(class(y)[1] == "Surv") y <- y[,"time"]
prettyNums <- paste("Rep", gsub(" ", "0", format(1:times)), sep = "")
for(i in 1:times) {
tmp <- createFolds(y, k = k, list = TRUE, returnTrain = TRUE)
names(tmp) <- paste("Fold",
gsub(" ", "0", format(seq(along = tmp))),
".",
prettyNums[i],
sep = "")
out <- if(i == 1) tmp else c(out, tmp)
}
out
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.