#' module_aglu_LB162.ag_prodchange_R_C_Y_GLU_irr
#'
#' This module calculates the first level production/yield change assumptions that are exogenous to GCAM. These rates are calculated for each commodity
#' at the region-glu-irrigation level in each model year, including the calibration year.
#'
#' @param command API command to execute
#' @param ... other optional parameters, depending on command
#' @return Depends on \code{command}: either a vector of required inputs,
#' a vector of output names, or (if \code{command} is "MAKE") all
#' the generated outputs: \code{L162.ag_YieldRatio_R_C_Ysy_GLU_irr}, \code{L162.ag_YieldRate_R_C_Y_GLU_irr}, \code{L162.bio_YieldRate_R_Y_GLU_irr}. The corresponding file in the
#' original data system was \code{LB162.ag_prodchange_R_C_Y_GLU_irr.R} (aglu level1).
#' @details The CROSIT agriculture database is processed and reconciled with LDS and GCAM data system production and harvested area information at the irrigation
#' level. Yield Ratios are calculated as future year reconciled production / base year reconciled production. The biomass yield ratio in each year is taken to
#' be the median of all other commodities at the region-glu-irrigation level. The yield ratios are used to calculate annual yield rate assumptions
#' (Yield Rate(year i) = Yield Ratio(year i) / Yield ratio(year i-1) ). Externally defined default yield rates are used to fill in missing data at the GCAM
#' region-commodity-glu-irrigation level for all model years.
#' @importFrom assertthat assert_that
#' @importFrom dplyr filter mutate select
#' @importFrom tidyr gather spread
#' @author ACS June 2017
module_aglu_LB162.ag_prodchange_R_C_Y_GLU_irr <- function(command, ...) {
if(command == driver.DECLARE_INPUTS) {
return(c(FILE = "common/iso_GCAM_regID",
FILE = "aglu/A_defaultYieldRate",
FILE = "aglu/AGLU_ctry",
FILE = "aglu/FAO/FAO_ag_CROSIT",
FILE = "aglu/FAO/FAO_ag_items_PRODSTAT",
"L151.ag_irrHA_ha_ctry_crop",
"L151.ag_rfdHA_ha_ctry_crop",
"L161.ag_irrProd_Mt_R_C_Y_GLU",
"L161.ag_rfdProd_Mt_R_C_Y_GLU"))
} else if(command == driver.DECLARE_OUTPUTS) {
return(c("L162.ag_YieldRatio_R_C_Ysy_GLU_irr",
"L162.ag_YieldRate_R_C_Y_GLU_irr",
"L162.bio_YieldRate_R_Y_GLU_irr"))
} else if(command == driver.MAKE) {
all_data <- list(...)[[1]]
year <- value <- GCAM_region_ID <- GCAM_commodity <- GLU <- CROSIT_country_ID <- CROSIT_ctry <-
CROSIT_crop <- CROSIT_cropID <- country_ID <- crop_ID <- Prod_kt_irrigated <- HA_kha_irrigated <-
Yield_kgHa_irrigated <- Prod_kt_rainfed <- HA_kha_rainfed <- Yield_kgHa_rainfed <- Irr_Rfd <-
yield_kgHa <- iso <- irrHA <- rfdHA <- GTAP_crop <- HA <- Mult <- Prod_mod <- YieldRatio <-
timestep <- lagyear <- YieldRatio_lag <- YieldRate <- defaultRate <- NULL # silence package check notes
# Load required inputs
iso_GCAM_regID <- get_data(all_data, "common/iso_GCAM_regID")
A_defaultYieldRate <- get_data(all_data, "aglu/A_defaultYieldRate")
AGLU_ctry <- get_data(all_data, "aglu/AGLU_ctry")
FAO_ag_CROSIT <- get_data(all_data, "aglu/FAO/FAO_ag_CROSIT")
FAO_ag_items_PRODSTAT <- get_data(all_data, "aglu/FAO/FAO_ag_items_PRODSTAT")
L151.ag_irrHA_ha_ctry_crop <- get_data(all_data, "L151.ag_irrHA_ha_ctry_crop")
L151.ag_rfdHA_ha_ctry_crop <- get_data(all_data, "L151.ag_rfdHA_ha_ctry_crop")
L161.ag_irrProd_Mt_R_C_Y_GLU <- get_data(all_data, "L161.ag_irrProd_Mt_R_C_Y_GLU")
L161.ag_rfdProd_Mt_R_C_Y_GLU <- get_data(all_data, "L161.ag_rfdProd_Mt_R_C_Y_GLU")
# Perform calculations
# Prepare CROSIT database by replacing country and crop IDs with names from
# AGLU_ctry and FAO_ag_items_PRODSTAT respectively. Because these are larger tables
# with data for multiple uses, a call to dplyr::distinct is used to reduce to only
# CROSIT-relevant countries and crops. This allows for left_join_error_no_match to
# be used.
# Some regions have 0 production but positive harvested area and a non zero yield -
# use the yields to recalculate production = yield * harvested area when yields are
# available; when yields are not available, reset harvested area to 0.
FAO_ag_CROSIT %>%
left_join_error_no_match(dplyr::distinct(select(AGLU_ctry, CROSIT_country_ID, CROSIT_ctry)),
by = c("country_ID" = "CROSIT_country_ID")) %>%
left_join_error_no_match(dplyr::distinct(select(FAO_ag_items_PRODSTAT, CROSIT_crop, CROSIT_cropID)),
by = c("crop_ID" = "CROSIT_cropID")) %>%
# Process 0 production / nonzero HA and yield cases
group_by(country_ID, crop_ID, year) %>%
mutate(Prod_kt_irrigated = replace(Prod_kt_irrigated,
Prod_kt_irrigated == 0 & HA_kha_irrigated != 0,
Yield_kgHa_irrigated * HA_kha_irrigated * CONV_KG_T),
Prod_kt_rainfed = replace(Prod_kt_rainfed,
Prod_kt_rainfed == 0 & HA_kha_rainfed != 0,
Yield_kgHa_rainfed * HA_kha_rainfed * CONV_KG_T),
HA_kha_irrigated = replace(HA_kha_irrigated,
Prod_kt_irrigated == 0 & HA_kha_irrigated != 0,
0),
HA_kha_rainfed = replace(HA_kha_rainfed,
Prod_kt_rainfed == 0 & HA_kha_rainfed != 0,
0)) %>%
ungroup() ->
FAO_ag_CROSIT
# Use the CROSIT database to prepare a table of yields by country, crop, irrigation, and year,
# and interpolate to fill in all of the specified agricultural production years, aglu.SPEC_AG_PROD_YEARS
# Finally, Calculate yield multipliers from the base year <=> first year of aglu.SPEC_AG_PROD_YEARS
# For each country, crop, irrigation, the multiplier for each year is
# yield in that year / yield in base year.
# pull off irrigated table of yield, country, crop; append irrigation information
FAO_ag_CROSIT %>%
select(CROSIT_ctry, CROSIT_crop, year, Yield_kgHa_irrigated) %>%
mutate(Irr_Rfd = "IRR") %>%
rename(yield_kgHa = Yield_kgHa_irrigated) ->
L162.ag_irrYield_kgHa_Rcrs_Ccrs_Y
# Do same for rainfed and bind the irrigated table.
# Then complete missing agricultural years from aglu.SPEC_AG_PROD_YEARS and interpolate
# to fill in yields. Keep only the years in aglu.SPEC_AG_PROD_YEARS
# Finally, Calculate yield multipliers.
FAO_ag_CROSIT %>%
select(CROSIT_ctry, CROSIT_crop, year, Yield_kgHa_rainfed) %>%
mutate(Irr_Rfd = "RFD") %>%
rename(yield_kgHa = Yield_kgHa_rainfed) %>%
bind_rows(L162.ag_irrYield_kgHa_Rcrs_Ccrs_Y) %>%
# add the missing aglu.SPEC_AG_PROD_YEARS and interpolate the yields
tidyr::complete(year = c(year, aglu.SPEC_AG_PROD_YEARS) ,
CROSIT_ctry, CROSIT_crop, Irr_Rfd) %>%
select(CROSIT_ctry, CROSIT_crop, Irr_Rfd, year, yield_kgHa) %>%
arrange(year) %>%
group_by(CROSIT_ctry, CROSIT_crop, Irr_Rfd) %>%
mutate(yield_kgHa = approx_fun(year, yield_kgHa)) %>%
ungroup() %>% filter(year %in% aglu.SPEC_AG_PROD_YEARS) %>%
# calculate yield multipliers
group_by(CROSIT_ctry, CROSIT_crop, Irr_Rfd) %>%
mutate(Mult = yield_kgHa / first(yield_kgHa)) %>%
ungroup() %>%
select(-yield_kgHa) %>%
# Drop the NaN's = crops with zero base year production / harvested area
na.omit() ->
L162.ag_Yieldmult_Rcrs_Ccrs_Y_irr
# We apply the above yield multipliers to crop-specific changes in harvested area.
# This removes bias from changes in composition of GCAM commodities in the FAO projections.
# These yield multipliers are now ready to be matched into the GTAP/LDS-based table of
# country x crop x zone harvested area in the base year, L151.ag_irrHA/rfdHA...
#
# First, merge the separate rainfed and irrigated harvested area datasets to simplify processing.
# Then join CROSIT country and crop identifiers. This intermediate table is used in multiple
# subsequent pipelines.
#
# CROSIT_ctry identifiers come from the AGLU_ctry table, which needs preprocessing to avoid unwanted
# extra rows due to Yugoslav FSR.
# deal with unfilled Yugoslavia entries in AGLU_ctry without impacting other code chunks.
AGLU_ctry %>%
select(iso, CROSIT_ctry) %>%
filter(!is.na(CROSIT_ctry)) %>%
dplyr::distinct() ->
AGLU_ctry_iso_CROSIT
L151.ag_irrHA_ha_ctry_crop %>%
mutate(Irr_Rfd = "IRR") %>%
rename(HA = irrHA) ->
L151.ag_irrHA_ha_ctry_crop
L151.ag_rfdHA_ha_ctry_crop %>%
mutate(Irr_Rfd = "RFD") %>%
rename(HA = rfdHA) %>%
bind_rows(L151.ag_irrHA_ha_ctry_crop) %>%
# Join CROSIT country and crop information and aggregate
# keeping NA's for later processing
left_join(AGLU_ctry_iso_CROSIT, by = "iso") %>%
left_join(dplyr::distinct(select(FAO_ag_items_PRODSTAT, CROSIT_crop, GTAP_crop)),
by = "GTAP_crop") ->
L162.ag_HA_ha_ctry_crop_irr
# Aggregate the above table of LDS area to CROSIT country and crop levels.
# Then, filter to only the country-crop-irrigation combinations present in the CROSIT multiplier
# table, L162.ag_Yieldmult_Rcrs_Ccrs_Y_irr.
# Repeat the resulting tibble for all aglu.SPEC_AG_PROD_YEARS, and join in the yield multipliers.
# This results in a table of harvested area and yield multipliers by CROSIT country and crop, glu,
# and irrigation for each aglu.SPEC_AG_PROD_YEARS year, based on LDS harvested area tables L151....
#
# Compositional shifts of CROSIT commodities within GCAM commodities do not translate to modified yields.
# This is because Harvested area multipliers are 1 in all periods, meaning the yield multipliers are
# equivalent to production multipliers and subsequent aggregation to the GCAM commodity level is not
# area weighted.
L162.ag_HA_ha_ctry_crop_irr %>%
group_by(CROSIT_ctry, CROSIT_crop, GLU, Irr_Rfd) %>%
summarise(HA = sum(HA)) %>%
na.omit() %>%
ungroup() %>%
# Filter to country-crop-irrigation combos in yield multiplier table
semi_join(select(L162.ag_Yieldmult_Rcrs_Ccrs_Y_irr, CROSIT_ctry, CROSIT_crop, Irr_Rfd),
by = c("CROSIT_ctry", "CROSIT_crop", "Irr_Rfd")) %>%
# repeat for all years in aglu.SPEC_AG_PROD_YEARS and join Yield multipliers for each year
repeat_add_columns(tibble::tibble(year = aglu.SPEC_AG_PROD_YEARS)) %>%
left_join_error_no_match(L162.ag_Yieldmult_Rcrs_Ccrs_Y_irr,
by = c("CROSIT_ctry", "CROSIT_crop", "Irr_Rfd", "year")) ->
L162.ag_HA_ha_Rcrs_Ccrs_Ysy_GLU_irr
# Calculating the adjusted production / harvested area in each time period, for each GCAM region / commodity / GLU.
# Starting from full GTAP table for composite regions and commodities in the CROSIT database, L162.ag_HA_ha_ctry_crop_irr,
# repeating for all years in aglu.SPEC_AG_PROD_YEARS.
# Then join in yield multipliers from CROSIT L162.ag_HA_ha_Rcrs_Ccrs_Ysy_GLU_irr, GCAM region and GCAM commodity information.
# Calculate modified production, Prod_mod = base year harvested area HA * yearly yield multipliers Mult. Production and
# Harvested area are then aggregated to the GCAM region - commodity level so that Aggregated Yield can be correctly calculated.
# The YieldRatio = Prod_mod/HA is then calculated and output for each GCAM region-commodity-glu-irrigation-year.
#
# The YieldRatio calculated in the following pipeline is so named to reflect that "the value was the yield the given year divided
# by the yield in the base year"; in other words, YieldRatio = Prod_mod / HA rather than Yield = Prod / HA.
# And modified Production, Prod_mod = Harvested Area * Yield Multiplier -> Prod_mod is productivity growth weighted by
# harvested area, and so the YieldRatio is distinct from Yield.
# preprocess table of multipliers before joining, restricting to the CROSIT country-crop-glu-irrigation present in
# the full GTAP table, L162.ag_HA_ha_ctry_crop_irr
L162.ag_HA_ha_Rcrs_Ccrs_Ysy_GLU_irr %>%
select(CROSIT_ctry, CROSIT_crop, Irr_Rfd, year, Mult) %>%
semi_join(L162.ag_HA_ha_ctry_crop_irr, by = c("CROSIT_ctry", "CROSIT_crop", "Irr_Rfd")) %>%
dplyr::distinct() ->
CROSIT_mult
L162.ag_HA_ha_ctry_crop_irr %>%
na.omit() %>%
repeat_add_columns(tibble::tibble(year = aglu.SPEC_AG_PROD_YEARS)) %>%
left_join(CROSIT_mult, by = c("CROSIT_ctry", "CROSIT_crop", "Irr_Rfd", "year")) %>%
na.omit() %>%
left_join_error_no_match(select(iso_GCAM_regID, iso, GCAM_region_ID), by = "iso") %>%
left_join_error_no_match(select(FAO_ag_items_PRODSTAT, GTAP_crop, GCAM_commodity), by = "GTAP_crop") %>%
# Multiply base-year harvested area by the future productivity multipliers to calculate prod_mod and aggregate
mutate(Prod_mod = HA * Mult) %>%
group_by(GCAM_region_ID, GCAM_commodity, year, GLU, Irr_Rfd) %>%
summarise(HA = sum(HA), Prod_mod = sum(Prod_mod)) %>%
ungroup() %>%
# Calculate YieldRatio = Prod_mod/HA by region-commodity-glu-irrigation-year; subset and output the YieldRatios
mutate(YieldRatio = Prod_mod / HA) %>%
na.omit() %>%
select(GCAM_region_ID, GCAM_commodity, year, GLU, Irr_Rfd, YieldRatio) ->
L162.ag_YieldRatio_R_C_Ysy_GLU_irr
# Create a comparable table of YieldRatio for each year by GCAM region / commodity / GLU for biomass.
# The biomass YieldRatio in each year is taken to be the median of YieldRatios for all commodities that year.
# Then bind to the table of yield ratios for other commodities
L162.ag_YieldRatio_R_C_Ysy_GLU_irr %>%
group_by(GCAM_region_ID, year, GLU, Irr_Rfd) %>%
summarise(YieldRatio = median(YieldRatio)) %>%
ungroup() %>%
mutate(GCAM_commodity = "biomass") %>%
bind_rows(L162.ag_YieldRatio_R_C_Ysy_GLU_irr) ->
L162.agBio_YieldRatio_R_C_Ysy_GLU_irr
# Translate these yield ratios to annual improvement rates.
# The rate in year i is defined as
# [(ratio_i / ratio_{i-1}) ^ (1/(year_i - year_{i-1}) ] - 1.
#
# To perform this calculation in a pipeline, we form two intermediate tables.
# First, of aglu.SPEC_AG_PROD_YEARS and the corresponding timestep for each.
# Second, of lagged YieldRatios and corresponding time steps,
# Where lagyear represents the year a ratio is subtracted from (ie lagyear = 2010 indicates this ratio
# is subtracted from the 2010 ratio.)
# This allows the same calculation to be performed even if aglu.SPEC_AG_PROD_YEARS changes.
tibble::tibble(year = aglu.SPEC_AG_PROD_YEARS, timestep = c(diff(aglu.SPEC_AG_PROD_YEARS), max(aglu.SPEC_AG_PROD_YEARS) + 1)) ->
timesteps
L162.agBio_YieldRatio_R_C_Ysy_GLU_irr %>%
left_join_error_no_match(timesteps, by = "year") %>%
mutate(lagyear = year + timestep,
# There is no lag for aglu.SPEC_AG_PROD_YEARS[1] but there is for a year not in SPEC_AG_PROD_YEARS
# aglu.SPEC_AG_PROD_YEARS[1] gets left alone, so for lagyear = not in aglu.SPEC_AG_PROD_YEAR, overwrite
# the ratio to be 0.5, the timestep to be 1, and lagyear = SPEC_AG_PROD_YEAR[1]. This allows
# the same pipeline to be used for all aglu.SPEC_AG_PROD_YEARS
YieldRatio = replace(YieldRatio,
! lagyear %in% aglu.SPEC_AG_PROD_YEARS,
0.5),
timestep = replace(timestep,
! lagyear %in% aglu.SPEC_AG_PROD_YEARS,
1),
lagyear = replace(lagyear,
! lagyear %in% aglu.SPEC_AG_PROD_YEARS,
first(aglu.SPEC_AG_PROD_YEARS))) %>%
select(-year) %>%
rename(YieldRatio_lag = YieldRatio) ->
L162.agBio_YieldRatio_lag
# Join the YieldRatio_lag table to the YieldRatio table to calculate the annual rates.
L162.agBio_YieldRatio_R_C_Ysy_GLU_irr %>%
left_join_error_no_match(L162.agBio_YieldRatio_lag, by = c("GCAM_region_ID", "GLU", "Irr_Rfd", "GCAM_commodity", "year" = "lagyear")) %>%
mutate(YieldRate = (YieldRatio / YieldRatio_lag) ^ (1 / timestep) - 1) %>%
select(-YieldRatio, -YieldRatio_lag, -timestep) ->
L162.agBio_YieldRate_R_C_Ysy_GLU_irr
# Match These Annual Improvement Rates, L162.agBio_YieldRate_R_C_Ysy_GLU_irr, into a table of existing crop yields.
#
# Step 1: make a table of default improvement rates by interpolating available rates to relevant years.
A_defaultYieldRate %>%
gather_years %>%
tidyr::complete(year = unique(c(year, max(HISTORICAL_YEARS), FUTURE_YEARS)),
GCAM_commodity) %>%
arrange(year) %>%
group_by(GCAM_commodity) %>%
mutate(value = approx_fun(year, value, rule = 2)) %>%
ungroup() %>%
filter(year %in% unique(c(max(HISTORICAL_YEARS), FUTURE_YEARS))) %>%
rename(defaultRate = value) ->
L162.defaultYieldRate
# Step 2: The GCAM region-commodity-glu-irrigation combinations contained in L161.ag_irrProd_Mt_R_C_Y_GLU, L161.ag_rfdProd_Mt_R_C_Y_GLU
# represent all relevant combinations, minus biomass.
# Get the set of possible combinations, and add biomass for each GCAM region-GLU-irrigation combo.
# Then join in the YieldRates from L162.agBio_YieldRate_R_C_Ysy_GLU_irr.
# get set of all relevent GCAM Region-Commodity-GLU-Irrigation combos (except biomass)
L161.ag_irrProd_Mt_R_C_Y_GLU %>%
mutate(Irr_Rfd = "IRR") %>%
bind_rows(mutate(L161.ag_rfdProd_Mt_R_C_Y_GLU, Irr_Rfd = "RFD")) %>%
select(GCAM_region_ID, GCAM_commodity, GLU, Irr_Rfd) %>%
dplyr::distinct() ->
L162.ag_Prod_Mt_R_C_Y_GLU_irr
# add biomass in each region-glu-irrigation combo and join to other commodities.
# Then join in yield ratesfrom L162.agBio_YieldRate_R_C_Ysy_GLU_irr.
L162.ag_Prod_Mt_R_C_Y_GLU_irr %>%
select(GCAM_region_ID, GLU, Irr_Rfd) %>%
dplyr::distinct() %>%
mutate(GCAM_commodity = "biomass") %>%
bind_rows(L162.ag_Prod_Mt_R_C_Y_GLU_irr) %>%
# Join the agBio Yield Rates
left_join(L162.agBio_YieldRate_R_C_Ysy_GLU_irr, by = c("GCAM_region_ID", "GCAM_commodity", "GLU", "Irr_Rfd")) %>%
# NA's include NA years, address
tidyr::complete(year = aglu.SPEC_AG_PROD_YEARS, nesting(GCAM_region_ID, GCAM_commodity, GLU, Irr_Rfd)) %>% # Written by Jeon (from Original JGCRI-GCAM)
filter(!is.na(year)) ->
# store in a table for further processing
L162.agbio_YieldRate_R_C_Y_GLU_irr
# Step 3: For combinations not covered by L162.agBio_YieldRate_R_C_Ysy_GLU_irr, fill in the values from the default table in
# Step 1.
# Subset to only the complete cases - group by region-commodity-glu-irrigation and keep only the members with non-na entries
# for every year
L162.agbio_YieldRate_R_C_Y_GLU_irr %>%
# isolate the incomplete rows, wipe out their existing data, and pull in default yield rates
group_by(GCAM_region_ID, GCAM_commodity, GLU, Irr_Rfd) %>%
filter(!any(is.na(YieldRate))) %>%
ungroup() ->
L162.agbio_YieldRate_R_C_Y_GLU_irr_completecases
# Isolate the incomplete cases, fill in default yield rates for each year, and join to the complete cases
L162.agbio_YieldRate_R_C_Y_GLU_irr %>%
# isolate the incomplete rows, wipe out their existing data, and pull in default yield rates
group_by(GCAM_region_ID, GCAM_commodity, GLU, Irr_Rfd) %>%
filter(any(is.na(YieldRate))) %>%
ungroup() %>%
select(-YieldRate) %>%
left_join_error_no_match(L162.defaultYieldRate, by = c("year", "GCAM_commodity")) %>%
rename(YieldRate = defaultRate) %>%
# incorporate back into main data frame
bind_rows(L162.agbio_YieldRate_R_C_Y_GLU_irr_completecases) ->
L162.agbio_YieldRate_R_C_Y_GLU_irr
# Step 4: Expand to future years by applying the default rate in each year
L162.agbio_YieldRate_R_C_Y_GLU_irr %>%
tidyr::complete(year = c(max(HISTORICAL_YEARS),FUTURE_YEARS), nesting(GCAM_region_ID, GCAM_commodity, GLU, Irr_Rfd)) %>%
left_join_error_no_match(L162.defaultYieldRate, by = c("year", "GCAM_commodity")) %>%
# replace NA's - which correspond to years we just filled in - with the default yield for that year we just joined
group_by(GCAM_region_ID, GCAM_commodity, GLU, Irr_Rfd, year) %>%
mutate(YieldRate = replace(YieldRate,
is.na(YieldRate),
defaultRate)) %>%
ungroup() %>%
select(-defaultRate) ->
L162.agbio_YieldRate_R_C_Y_GLU_irr
# Step 5: Separate out into tables for biomass and non-biomass quantities for writing outputs.
# Then rename columns of output tables to value for testing.
# In old DS, L162.ag_YieldRatio_R_C_Ysy_GLU_irr is long-form with the informative name YieldRatio.
# Therefore here, L162.ag_YieldRatio_R_C_Ysy_GLU_irr can be left alone.
# Old L162.ag_YieldRate_R_C_Y_GLU_irr and L162.bio_YieldRate_R_Y_GLU_irr are in wide-form, so new
# L162.ag_YieldRate_R_C_Y_GLU_irr and L162.bio_YieldRate_R_Y_GLU_irr need column names of value rather
# than the informative YieldRate used so far for readability. They also need appropriate flags.
L162.agbio_YieldRate_R_C_Y_GLU_irr %>%
filter(GCAM_commodity == "biomass") %>%
rename(value = YieldRate) ->
L162.bio_YieldRate_R_Y_GLU_irr
L162.agbio_YieldRate_R_C_Y_GLU_irr %>%
filter(GCAM_commodity != "biomass") %>%
rename(value = YieldRate) ->
L162.ag_YieldRate_R_C_Y_GLU_irr
# Produce outputs
L162.ag_YieldRatio_R_C_Ysy_GLU_irr %>%
add_title("Yield change ratios from final historical year by GCAM region / commodity / future year / GLU / irrigation") %>%
add_units("Unitless") %>%
add_comments("Future year production multipliers are calculated at the CROSIT country-crop level as future production / base-year production.") %>%
add_comments("These are used to aggregate to the GCAM region-commodity-GLU level and calculate future year yield ratios.") %>%
add_legacy_name("L162.ag_YieldRatio_R_C_Ysy_GLU_irr") %>%
add_precursors("common/iso_GCAM_regID",
"aglu/A_defaultYieldRate",
"aglu/AGLU_ctry",
"aglu/FAO/FAO_ag_CROSIT",
"aglu/FAO/FAO_ag_items_PRODSTAT",
"L151.ag_irrHA_ha_ctry_crop",
"L151.ag_rfdHA_ha_ctry_crop",
"L161.ag_irrProd_Mt_R_C_Y_GLU",
"L161.ag_rfdProd_Mt_R_C_Y_GLU") ->
L162.ag_YieldRatio_R_C_Ysy_GLU_irr
L162.ag_YieldRate_R_C_Y_GLU_irr %>%
add_title("Yield change rates by GCAM region / commodity / future year / GLU / irrigation") %>%
add_units("Annual rate") %>%
add_comments("Yield Ratios are used to calculate Yield Rates for each GCAM region-commodity-GLU for externally specified agricultural") %>%
add_comments("production years. Externally provided default Yield Rates are used to fill in missing information and to extend from ") %>%
add_comments("specified years to all future years.") %>%
add_legacy_name("L162.ag_YieldRate_R_C_Y_GLU_irr") %>%
add_precursors("common/iso_GCAM_regID",
"aglu/A_defaultYieldRate",
"aglu/AGLU_ctry",
"aglu/FAO/FAO_ag_CROSIT",
"aglu/FAO/FAO_ag_items_PRODSTAT",
"L151.ag_irrHA_ha_ctry_crop",
"L151.ag_rfdHA_ha_ctry_crop",
"L161.ag_irrProd_Mt_R_C_Y_GLU",
"L161.ag_rfdProd_Mt_R_C_Y_GLU") ->
L162.ag_YieldRate_R_C_Y_GLU_irr
L162.bio_YieldRate_R_Y_GLU_irr %>%
add_title("Biomass yield change rates by GCAM region / commodity / future year / GLU / irrigation") %>%
add_units("Annual rate") %>%
add_comments("Biomass Yield Ratios are the median ratio of all other commodities at the region-GLU-irrigation level in each year and are used to") %>%
add_comments("calculate Yield Rates for each GCAM region-commodity-GLU for externally specified agricultural") %>%
add_comments("production years. Externally provided default Yield Rates are used to fill in missing information and to extend from ") %>%
add_comments("specified years to all future years.") %>%
add_legacy_name("L162.bio_YieldRate_R_Y_GLU_irr") %>%
add_precursors("common/iso_GCAM_regID",
"aglu/A_defaultYieldRate",
"aglu/AGLU_ctry",
"aglu/FAO/FAO_ag_CROSIT",
"aglu/FAO/FAO_ag_items_PRODSTAT",
"L151.ag_irrHA_ha_ctry_crop",
"L151.ag_rfdHA_ha_ctry_crop",
"L161.ag_irrProd_Mt_R_C_Y_GLU",
"L161.ag_rfdProd_Mt_R_C_Y_GLU") ->
L162.bio_YieldRate_R_Y_GLU_irr
return_data(L162.ag_YieldRatio_R_C_Ysy_GLU_irr, L162.ag_YieldRate_R_C_Y_GLU_irr, L162.bio_YieldRate_R_Y_GLU_irr)
} else {
stop("Unknown command")
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.