#' All possible regression
#'
#' @description
#' Fits all regressions involving one regressor, two regressors, three
#' regressors, and so on. It tests all possible subsets of the set of potential
#' independent variables.
#'
#' @param model An object of class \code{lm}.
#' @param max_order Maximum subset order.
#' @param x An object of class \code{ols_step_all_possible}.
#' @param print_plot logical; if \code{TRUE}, prints the plot else returns a plot object.
#' @param ... Other arguments.
#'
#' @return \code{ols_step_all_possible} returns an object of class \code{"ols_step_all_possible"}.
#' An object of class \code{"ols_step_all_possible"} is a data frame containing the
#' following components:
#'
#' \item{mindex}{model index}
#' \item{n}{number of predictors}
#' \item{predictors}{predictors in the model}
#' \item{rsquare}{rsquare of the model}
#' \item{adjr}{adjusted rsquare of the model}
#' \item{rmse}{root mean squared error of the model}
#' \item{predrsq}{predicted rsquare of the model}
#' \item{cp}{mallow's Cp}
#' \item{aic}{akaike information criteria}
#' \item{sbic}{sawa bayesian information criteria}
#' \item{sbc}{schwarz bayes information criteria}
#' \item{msep}{estimated MSE of prediction, assuming multivariate normality}
#' \item{fpe}{final prediction error}
#' \item{apc}{amemiya prediction criteria}
#' \item{hsp}{hocking's Sp}
#'
#' @references
#' Mendenhall William and Sinsich Terry, 2012, A Second Course in Statistics Regression Analysis (7th edition).
#' Prentice Hall
#'
#' @examples
#' model <- lm(mpg ~ disp + hp, data = mtcars)
#' k <- ols_step_all_possible(model)
#' k
#'
#' # plot
#' plot(k)
#'
#' # maximum subset
#' model <- lm(mpg ~ disp + hp + drat + wt + qsec, data = mtcars)
#' ols_step_all_possible(model, max_order = 3)
#'
#' @importFrom utils combn
#'
#' @export
#'
ols_step_all_possible <- function(model, ...) UseMethod("ols_step_all_possible")
#' @export
#' @rdname ols_step_all_possible
#'
ols_step_all_possible.default <- function(model, max_order = NULL, ...) {
check_model(model)
check_npredictors(model, 2)
metrics <- allpos_helper(model, max_order)
ui <- data.frame(
n = metrics$lpreds,
predictors = unlist(metrics$preds),
rsquare = unlist(metrics$rsq),
adjr = unlist(metrics$adjrsq),
rmse = unlist(metrics$rmse),
predrsq = unlist(metrics$predrsq),
cp = unlist(metrics$cp),
aic = unlist(metrics$aic),
sbic = unlist(metrics$sbic),
sbc = unlist(metrics$sbc),
msep = unlist(metrics$msep),
fpe = unlist(metrics$fpe),
apc = unlist(metrics$apc),
hsp = unlist(metrics$hsp),
stringsAsFactors = F
)
sorted <- c()
for (i in seq_len(metrics$lc)) {
temp <- ui[metrics$q[i]:metrics$t[i], ]
temp <- temp[order(temp$rsquare, decreasing = TRUE), ]
sorted <- rbind(sorted, temp)
}
mindex <- seq_len(nrow(sorted))
sorted <- cbind(mindex, sorted)
out <- list(result = sorted)
class(out) <- c("ols_step_all_possible")
return(out)
}
#' @export
#'
print.ols_step_all_possible <- function(x, ...) {
n <- max(x$result$mindex)
k <- data.frame(x$result)[, c(1:5, 8)]
names(k) <- c("Index", "N", "Predictors", "R-Square", "Adj. R-Square", "Mallow's Cp")
print(k)
}
#' @export
#' @rdname ols_step_all_possible
#'
plot.ols_step_all_possible <- function(x, model = NA, print_plot = TRUE, ...) {
k <- x$result
d <- data.frame(index = k$mindex,
n = k$n,
rsquare = k$rsquare,
adjr = k$adjr,
cp = k$cp,
aic = k$aic,
sbic = k$sbic,
sbc = k$sbc)
d$cps <- abs(d$n - d$cp)
p1 <- all_possible_plot(d, "rsquare", title = "R-Square")
p2 <- all_possible_plot(d, "adjr", title = "Adj. R-Square")
p3 <- all_possible_plot(d, "cps", title = "Cp")
p4 <- all_possible_plot(d, "aic", title = "AIC")
p5 <- all_possible_plot(d, "sbic", title = "SBIC")
p6 <- all_possible_plot(d, "sbc", title = "SBC")
myplots <- list(plot_1 = p1, plot_2 = p2, plot_3 = p3,
plot_4 = p4, plot_5 = p5, plot_6 = p6)
if (print_plot) {
marrangeGrob(myplots, nrow = 2, ncol = 2, top = "All Possible Regression")
} else {
return(myplots)
}
}
#' All possible regression plot
#'
#' Generate plots for best subset regression.
#'
#' @importFrom ggplot2 ggtitle scale_shape_manual scale_size_manual scale_color_manual ggtitle geom_text
#'
#' @param d1 A data.frame.
#' @param d2 A data.frame.
#' @param title Plot title.
#'
#' @noRd
#'
all_possible_plot <- function(d, var, title = "R-Square") {
d1 <- d[, c("n", var)]
colnames(d1) <- c("x", "y")
maxs <- all_pos_maxs(d, var, title)
lmaxs <- all_pos_lmaxs(maxs)
index <- all_pos_index(d, var, title)
d2 <- data.frame(x = lmaxs, y = maxs, tx = index, shape = 6, size = 4)
ggplot(d1, aes(x = x, y = y)) +
geom_point(color = "blue", size = 2) +
geom_point(data = d2, aes(x = x, y = y, shape = factor(shape),
color = factor(shape), size = factor(size))) +
geom_text(data = d2, aes(label = tx), hjust = 0, nudge_x = 0.1) +
scale_shape_manual(values = c(2), guide = "none") +
scale_size_manual(values = c(4), guide = "none") +
scale_color_manual(values = c("red"), guide = "none") +
xlab("") +
ylab("") +
ggtitle(title)
}
all_pos_maxs <- function(d, var, title = "R-Square") {
if (title == "R-Square" | title == "Adj. R-Square") {
as.numeric(lapply(split(d[[var]], d$n), max))
} else {
as.numeric(lapply(split(d[[var]], d$n), min))
}
}
all_pos_lmaxs <- function(maxs) {
seq_len(length(maxs))
}
all_pos_index <- function(d, var, title = "R-Square") {
index <- c()
if (title == "R-Square" | title == "Adj. R-Square") {
n <- as.numeric(lapply(split(d[[var]], d$n), max))
m <- data.frame(n = seq_len(length(n)), maximum = n)
} else {
n <- as.numeric(lapply(split(d[[var]], d$n), min))
m <- data.frame(n = seq_len(length(n)), minimum = n)
}
colnames(m) <- c("n", var)
k <- split(d[c("index", var)], d$n)
for (i in m$n) {
j <- which(part_2(m, var, i) == part_3(k, var, i))
index[i] <- part_1(k, i)[j]
}
return(index)
}
part_1 <- function(k, i) {
k[[i]]$index
}
part_2 <- function(m, var, i) {
m[[var]][i]
}
part_3 <- function(k, var, i) {
k[[i]][[var]]
}
#' All possible regression variable coefficients
#'
#' Returns the coefficients for each variable from each model.
#'
#' @param object An object of class \code{lm}.
#' @param ... Other arguments.
#'
#' @return \code{ols_step_all_possible_betas} returns a \code{data.frame} containing:
#'
#' \item{model_index}{model number}
#' \item{predictor}{predictor}
#' \item{beta_coef}{coefficient for the predictor}
#'
#' @examples
#' \dontrun{
#' model <- lm(mpg ~ disp + hp + wt, data = mtcars)
#' ols_step_all_possible_betas(model)
#' }
#'
#' @export
#'
ols_step_all_possible_betas <- function(object, ...) {
if (!all(class(object) == "lm")) {
stop("Please specify a OLS linear regression model.", call. = FALSE)
}
if (length(object$coefficients) < 3) {
stop("Please specify a model with at least 2 predictors.", call. = FALSE)
}
metrics <- allpos_helper(object)
beta_names <- names(metrics$betas)
mindex <- seq_len(length(metrics$rsq))
# detect index of intercepts
intercepts <- grep("(Intercept)", beta_names)
# increment length of betas
lbeta_nam <- length(beta_names) + 1
# detect length of betas in each model plus the last model with all variables
reps <- c(diff(intercepts), (lbeta_nam - rev(intercepts)[1]))
m_index <- rep(mindex, reps)
beta <- metrics$betas
data.frame(model = m_index, predictor = beta_names, beta = beta)
}
#' All possible regression internal
#'
#' Internal function for all possible regression.
#'
#' @param model An object of class \code{lm}.
#'
#' @noRd
#'
allpos_helper <- function(model, max_order = NULL) {
nam <- coeff_names(model)
n <- length(nam)
r <- seq_len(n)
combs <- list()
for (i in seq_len(n)) {
combs[[i]] <- combn(n, r[i])
}
if (!is.null(max_order)) {
check_order(n, max_order)
}
if (is.null(max_order)) {
max_order <- n
}
pos_data <- model$model
predicts <- nam
# lc <- length(combs)
lc <- max_order
varnames <- model_colnames(model)
len_preds <- length(predicts)
gap <- len_preds - 1
space <- coeff_length(predicts, gap)
colas <- unname(unlist(lapply(combs, ncol)))
response <- varnames[1]
p <- colas
t <- cumsum(colas)
q <- c(1, t[-lc] + 1)
mcount <- 0
rsq <- list()
adjrsq <- list()
sigma <- list()
predrsq <- list()
cp <- list()
aic <- list()
sbic <- list()
sbc <- list()
msep <- list()
fpe <- list()
apc <- list()
hsp <- list()
preds <- list()
lpreds <- c()
betas <- c()
for (i in seq_len(lc)) {
for (j in seq_len(colas[i])) {
predictors <- nam[combs[[i]][, j]]
lp <- length(predictors)
out <- ols_regress(paste(response, "~", paste(predictors, collapse = " + ")), data = pos_data)
mcount <- mcount + 1
lpreds[mcount] <- lp
rsq[[mcount]] <- out$rsq
adjrsq[[mcount]] <- out$adjr
sigma[[mcount]] <- out$rmse
predrsq[[mcount]] <- ols_pred_rsq(out$model)
cp[[mcount]] <- ols_mallows_cp(out$model, model)
aic[[mcount]] <- ols_aic(out$model)
sbic[[mcount]] <- ols_sbic(out$model, model)
sbc[[mcount]] <- ols_sbc(out$model)
msep[[mcount]] <- ols_msep(out$model)
fpe[[mcount]] <- ols_fpe(out$model)
apc[[mcount]] <- ols_apc(out$model)
hsp[[mcount]] <- ols_hsp(out$model)
preds[[mcount]] <- paste(predictors, collapse = " ")
betas <- append(betas, out$betas)
}
}
result <- list(
lpreds = lpreds, rsq = rsq, adjrsq = adjrsq, rmse = sigma,
predrsq = predrsq, cp = cp, aic = aic, sbic = sbic,
sbc = sbc, msep = msep, fpe = fpe, apc = apc, hsp = hsp,
preds = preds, lc = lc, q = q, t = t, betas = betas
)
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.