###############
## load libraries
library(devtools)
###############
#only on my computer
LoadAdultHuman <- function(){
setClass(Class="DataL",
representation(fileloc = "list",abrev = "list",conversion = "data.frame",DIM = "list", outline = "list", slices = "vector",DIR = "vector"))
slices <- c(5,17,25,31,51,59,67,77,83,91)#43 missing Outline.tiff
## Get File Locations
DIR <- c(paste("~/Documents/SalkProjects/ME/NHPManuscript/brainImageR_tiffs/adultHuman_lowres/AllenBrainSlicescopy/",paste("Slice_",slices,"/",sep=""),sep=""))
fileloc <- c()
i <- 0
for (d in DIR){
i <- i + 1
x <- paste(d,list.files(path=d,pattern="tif"),sep="")
x <- x[-c(grep("Outline",x))]
fileloc[[i]] <- x
}
names(fileloc) <- DIR
## Get Abreviations
abrev <- c()
for (i in 1:length(DIR)){
tmp <- do.call("rbind",strsplit(x=list.files(path=DIR[i],pattern="tif"),fixed=TRUE,split="."))[,1]
abrev[[i]] <- tmp[-c(which(tmp == "Outline"))]
}
names(abrev) <- DIR
#conversion of abreviation to the regions that are in this image
conversion <- as.data.frame(read.table(as.matrix("~/Documents/SalkProjects/ME/NHPManuscript/brainImageR_tiffs/adultHuman_lowres/AllenBrainSlicescopy/Human34_Hierarchy.txt"),header=TRUE))
#Dimensions of the image
DIM <- c()
options(warn = -1)
for (d in 1:length(DIR)){
f <- list.files(DIR[d])
fordim <- paste(DIR[d],f[1],sep="")
DIM[[d]] <- dim(readTIFF(source=fordim)[,,1])
}
names(DIM) <- DIR
#Outline image
outline <- c()
for (i in 1:length(DIR)){
tmpfile <- paste(DIR[i],"Outline.tif",sep="")
outline[[i]] <- readTIFF(source=tmpfile)[,,1]
}
options(warn = 0)
names(outline) <- DIR
datal <- new(Class="DataL",
fileloc = fileloc,abrev = abrev,conversion = conversion,DIM = DIM, outline = outline, slices = slices,DIR = DIR)
return(datal)
}
LoadDevelopingHuman <- function(res = "high"){
# require(tiff)
setClass(Class="DataL",
representation(fileloc = "list",abrev = "list",conversion = "data.frame",DIM = "list", outline = "list", slices = "vector",DIR = "vector"))
slices <- c(1,6,8,12,19,24,29,32,39,45)
## Get File Locations
if (res == "high"){
DIR <- c(paste("~/Documents/SalkProjects/ME/NHPManuscript/brainImageR_tiffs/developingHuman/AllenBrainSlicescopy/",paste("Slice_",slices,"/",sep=""),sep=""))
}else if (res == "low"){
DIR <- c(paste("~/Documents/SalkProjects/ME/NHPManuscript/brainImageR_tiffs/developingHuman_lowres/AllenBrainSlicescopy/",paste("Slice_",slices,"/",sep=""),sep=""))
}
fileloc <- c()
i <- 0
for (d in DIR){
i <- i + 1
x <- paste(d,list.files(path=d,pattern="tif"),sep="")
x <- x[-c(grep("Outline",x))]
fileloc[[i]] <- x
}
names(fileloc) <- DIR
## Get Abreviations
abrev <- c()
for (i in 1:length(DIR)){
tmp <- do.call("rbind",strsplit(x=list.files(path=DIR[i],pattern="tif"),fixed=TRUE,split="."))[,1]
abrev[[i]] <- tmp[-c(which(tmp == "Outline"))]
}
names(abrev) <- DIR
#conversion of abreviation to the regions that are in this image
conversion <- as.data.frame(read.table(as.matrix("~/Documents/SalkProjects/ME/brainImageR_ABA/colmeta_hierarchy_2.txt"),header=TRUE))
#Dimensions of the image
DIM <- c()
options(warn = -1)
for (d in 1:length(DIR)){
fordim <- paste(DIR[d],"CP.tif",sep="")
DIM[[d]] <- dim(readTIFF(source=fordim)[,,1])
}
names(DIM) <- DIR
#Outline image
outline <- c()
for (i in 1:length(DIR)){
tmpfile <- paste(DIR[i],"Outline.tif",sep="")
outline[[i]] <- readTIFF(source=tmpfile)[,,1]
}
options(warn = 0)
names(outline) <- DIR
datal <- new(Class="DataL",
fileloc = fileloc,abrev = abrev,conversion = conversion,DIM = DIM, outline = outline, slices = slices,DIR = DIR)
return(datal)
}
###########################################
## DEVELOPING HUMAN
###########################################
load("~/Documents/SalkProjects/ME/NHPManuscript/nhp_man_R/abaresults.rda")
devhum <- LoadDevelopingHuman(res = "low")
dev_DIM <- devhum@DIM
dev_fileloc <- devhum@fileloc
dev_abrev <- devhum@abrev
dev_conversion <- devhum@conversion
dev_outline <- devhum@outline
dev_slices <- devhum@slices
dev_DIR <- devhum@DIR
dev_abatissues <- abatissues
dev_abatissuesBygenes <- abatissuesBygenes
dev_colmeta <- colmeta
dev_rowmeta <- rowmeta
##############
#saving tif images into list instead of on computer
# Dir <- DIR[slice] #pick which slice
# Abrev <- as.vector(unlist(abrev[Dir]))
# Fileloc <- unlist(fileloc[Dir])
# Files <- lapply(X=as.vector(Abrev),FUN=LoadFiles, Dir = Dir)
# dim <- as.vector(unlist(DIM[Dir]))
#
require(tiff)
#file <- paste(Dir,i,".tif",sep="")
DIR <- dev_DIR
#low res developmental human
DevHum_low <- list()
for (k in 1:length(DIR)){
DevHum_low[[k]] <- list()
names(DevHum_low)[[k]] <- strsplit(DIR[k], "/")[[1]][length(strsplit(DIR[k], "/")[[1]])]
for(i in 1:length(unlist(dev_fileloc[k]))){
f <- dev_fileloc[[k]][i]
suppressWarnings(DevHum_low[[k]][[i]] <- readTIFF(source=f)[,,1])
f2 <- unlist(strsplit(f, "/"))
names(DevHum_low[[k]])[i] <- strsplit(f2[length(f2)],".", fixed = TRUE)[[1]][1]
}
}
names(dev_DIM) <- names(DevHum_low)
names(dev_abrev) <- names(DevHum_low)
names(dev_outline) <- names(DevHum_low)
############
###########################################
## ADULT HUMAN
###########################################
#LOAD ADULT HUMAN
load("~/Documents/SalkProjects/ME/NHPManuscript/nhp_man_R/abaresults_adult.rda")
ad_abatissues <- abatissues
ad_abatissuesBygenes <- abatissuesBygenes
ad_colmeta <- colmeta
ad_rowmeta <- rowmeta
adhum <- LoadAdultHuman()
ad_DIM <- adhum@DIM
ad_fileloc <- adhum@fileloc
ad_abrev <- adhum@abrev
ad_conversion <- adhum@conversion
ad_outline <- adhum@outline
ad_slices <- adhum@slices
ad_DIR <- adhum@DIR
##############
require(tiff)
file <- paste(ad_DIR,i,".tif",sep="")
#low res developmental human
AdHum <- list()
for (k in 1:length(ad_DIR)){
AdHum[[k]] <- list()
names(AdHum)[[k]] <- strsplit(ad_DIR[k], "/")[[1]][length(strsplit(ad_DIR[k], "/")[[1]])]
for(i in 1:length(unlist(ad_fileloc[k]))){
f <- ad_fileloc[[k]][i]
suppressWarnings(AdHum[[k]][[i]] <- readTIFF(source=f)[,,1])
f2 <- unlist(strsplit(f, "/"))
names(AdHum[[k]])[i] <- strsplit(f2[length(f2)],".", fixed = TRUE)[[1]][1]
}
}
names(ad_DIM) <- names(AdHum)
names(ad_abrev) <- names(AdHum)
names(ad_outline) <- names(AdHum)
############
# ADDITIONAL INFO FOR THE PREDICTIONS
load("~/Documents/SalkProjects/ME/NHPManuscript/nhp_man_R/estTime_data.rda")
##
#devtools::use_data(DevHum_low, overwrite = TRUE, internal = FALSE)
#devtools::use_data(AdHum, overwrite = TRUE, internal = FALSE)
#devtools::use_data(dev_DIM, overwrite = TRUE, internal = FALSE)
#devtools::use_data(ad_DIM, overwrite = TRUE, internal = FALSE)
#devtools::use_data(dev_abrev, overwrite = TRUE, internal = FALSE)
#devtools::use_data(ad_abrev, overwrite = TRUE, internal = FALSE)
#devtools::use_data(dev_outline, overwrite = TRUE, internal = FALSE)
#devtools::use_data(ad_outline, overwrite = TRUE, internal = FALSE)
#devtools::use_data(dev_conversion, overwrite = TRUE, internal = FALSE)
#devtools::use_data(ad_conversion, overwrite = TRUE, internal = FALSE)
#devtools::use_data(dev_slices, overwrite = TRUE, internal = FALSE)
#devtools::use_data(ad_slices, overwrite = TRUE, internal = FALSE)
#devtools::use_data(dev_abatissuesBygenes, overwrite = TRUE, internal = FALSE)
#devtools::use_data(ad_abatissuesBygenes, overwrite = TRUE, internal = FALSE)
devtools::use_data(dev_colmeta, overwrite = TRUE, internal = FALSE)
devtools::use_data(rowmeta, overwrite = TRUE, internal = FALSE)
devtools::use_data(ad_colmeta, overwrite = TRUE, internal = FALSE)
devtools::use_data(alldev_colMeta, overwrite = TRUE, internal = FALSE)
devtools::use_data(alldev_scale, overwrite = TRUE, internal = FALSE)
devtools::use_data(GeneLists, overwrite = TRUE, internal = FALSE)
devtools::use_data(alldev_rowMeta, overwrite = TRUE, internal = FALSE)
devtools::use_data(Samples, overwrite = TRUE, internal = FALSE)
devtools::use_data(Models, overwrite = TRUE, internal = FALSE)
# devtools::use_data(DevHum_low,dev_DIM,dev_abrev, dev_outline,
# dev_conversion,dev_slices,
# dev_DIR, dev_abatissuesBygenes,
# dev_colmeta,rowmeta,
# AdHum, ad_DIM, ad_abrev, ad_outline,
# ad_conversion, ad_slices,
# ad_DIR,
# ad_abatissuesBygenes,
# ad_colmeta,
# alldev_colMeta, alldev_scale,Models,GeneLists,alldev_rowMeta,Samples,
# internal = TRUE, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.