This vigettte demonstrates how to run ALRA on Seurat objects, which aims to recover missing values in scRNA-seq data through imputation. If you use ALRA, please cite:
Zero-preserving imputation of scRNA-seq data using low-rank approximation
George C. Linderman, Jun Zhao, Yuval Kluger
biorxiv, 2018.
doi: https://doi.org/10.1101/397588
GitHub: https://github.com/KlugerLab/ALRA
knitr::opts_chunk$set( tidy = TRUE, tidy.opts = list(width.cutoff = 95), message = FALSE, warning = FALSE, fig.height = 20, fig.width = 16 )
Prerequisites to install:
library(Seurat) library(SeuratData) library(SeuratWrappers) library(dplyr)
To learn more about this dataset, type ?pbmc3k
InstallData("pbmc3k") data("pbmc3k") # Initial processing and visualization pbmc3k <- SCTransform(pbmc3k) %>% RunPCA() %>% RunUMAP(dims = 1:30) # run ALRA, creates alra assay of imputed values pbmc3k <- RunALRA(pbmc3k)
# visualize original and imputed values pbmc3k <- NormalizeData(pbmc3k, assay = 'RNA') features.plot <- c('CD3D', 'MS4A1', 'CD8A', 'GZMK', 'NCAM1', 'FCGR3A') DefaultAssay(pbmc3k) <- 'RNA' plot1 <- FeaturePlot(pbmc3k, features.plot, ncol = 2) DefaultAssay(pbmc3k) <- 'alra' plot2 <- FeaturePlot(pbmc3k, features.plot, ncol = 2, cols = c('lightgrey','red')) CombinePlots(list(plot1, plot2), ncol = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.