Compiled: August 16, 2019
This vigettte demonstrates how to run ALRA on Seurat objects, which aims to recover missing values in scRNA-seq data through imputation. If you use ALRA, please cite:
Zero-preserving imputation of scRNA-seq data using low-rank approximation
George C. Linderman, Jun Zhao, Yuval Kluger
biorxiv, 2018.
Prerequisites to install:
library(Seurat)
library(SeuratData)
library(SeuratWrappers)
library(dplyr)
To learn more about this dataset, type ?pbmc3k
InstallData("pbmc3k")
data("pbmc3k")
# Initial processing and visualization
pbmc3k <- SCTransform(pbmc3k) %>% RunPCA() %>% RunUMAP(dims = 1:30)
# run ALRA, creates alra assay of imputed values
pbmc3k <- RunALRA(pbmc3k)
# visualize original and imputed values
pbmc3k <- NormalizeData(pbmc3k, assay = "RNA")
features.plot <- c("CD3D", "MS4A1", "CD8A", "GZMK", "NCAM1", "FCGR3A")
DefaultAssay(pbmc3k) <- "RNA"
plot1 <- FeaturePlot(pbmc3k, features.plot, ncol = 2)
DefaultAssay(pbmc3k) <- "alra"
plot2 <- FeaturePlot(pbmc3k, features.plot, ncol = 2, cols = c("lightgrey", "red"))
CombinePlots(list(plot1, plot2), ncol = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.