This vignette demonstrates the use of the Conos package in Seurat. Commands and parameters are based off of the Conos tutorial. If you use Conos in your work, please cite:
Joint analysis of heterogeneous single-cell RNA-seq dataset collections
Nikolas Barkas, Viktor Petukhov, Daria Nikolaeva, Yaroslav Lozinsky, Samuel Demharter, Konstantin Khodosevich, Peter V. Kharchenko
Nature Methods, 2019.
doi: 10.1038/s41592-019-0466-z
GitHub: https://github.com/hms-dbmi/conos
knitr::opts_chunk$set( tidy = TRUE, tidy.opts = list(width.cutoff = 95), message = FALSE, warning = FALSE )
Prerequisites to install:
library(conos) library(Seurat) library(SeuratData) library(SeuratWrappers)
To learn more about this dataset, type ?pbmcsca
InstallData("pbmcsca") data("pbmcsca") pbmcsca.panel <- SplitObject(pbmcsca, split.by = 'Method') for (i in 1:length(pbmcsca.panel)) { pbmcsca.panel[[i]] <- NormalizeData(pbmcsca.panel[[i]]) %>% FindVariableFeatures() %>% ScaleData() %>% RunPCA(verbose = FALSE) } pbmcsca.con <- Conos$new(pbmcsca.panel) pbmcsca.con$buildGraph( k = 15, k.self = 5, space = 'PCA', ncomps = 30, n.odgenes = 2000, matching.method = 'mNN', metric = 'angular', score.component.variance = TRUE, verbose = TRUE ) pbmcsca.con$findCommunities() pbmcsca.con$embedGraph() pbmcsca <- as.Seurat(pbmcsca.con) DimPlot(pbmcsca, reduction = "largeVis", group.by = c("Method", "ident", 'CellType'), ncol = 3)
To learn more about this dataset, type ?ifnb
InstallData("ifnb") data("ifnb") ifnb.panel <- SplitObject(ifnb, split.by = 'stim') for (i in 1:length(ifnb.panel)) { ifnb.panel[[i]] <- NormalizeData(ifnb.panel[[i]]) %>% FindVariableFeatures() %>% ScaleData() %>% RunPCA(verbose = FALSE) } ifnb.con <- Conos$new(ifnb.panel) ifnb.con$buildGraph( k = 15, k.self = 5, space = 'PCA', ncomps = 30, n.odgenes = 2000, matching.method = 'mNN', metric = 'angular', score.component.variance = TRUE, verbose = TRUE ) ifnb.con$findCommunities() ifnb.con$embedGraph() ifnb <- as.Seurat(ifnb.con) DimPlot(ifnb, reduction = "largeVis", group.by = c("stim", "ident", 'seurat_annotations'), ncol = 3)
To learn more about this dataset, type ?panc8
InstallData("panc8") data("panc8") panc8.panel <- SplitObject(panc8, split.by = 'replicate') for (i in 1:length(panc8.panel)) { panc8.panel[[i]] <- NormalizeData(panc8.panel[[i]]) %>% FindVariableFeatures() %>% ScaleData() %>% RunPCA(verbose = FALSE) } panc8.con <- Conos$new(panc8.panel) panc8.con$buildGraph( k = 15, k.self = 5, space = 'PCA', ncomps = 30, n.odgenes = 2000, matching.method = 'mNN', metric = 'angular', score.component.variance = TRUE, verbose = TRUE ) panc8.con$findCommunities() panc8.con$embedGraph() panc8 <- as.Seurat(panc8.con) DimPlot(panc8, reduction = "largeVis", group.by = c("replicate", "ident", 'celltype'), ncol = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.