title: "Fast Differential Expression with Presto"
date: 'Compiled: r format(Sys.Date(), "%B %d, %Y")
'
output:
github_document:
html_preview: true
toc: true
toc_depth: 3
fig_width: 16
html_document:
df_print: kable
theme: united
fig_height: 5
fig_width: 16
out_height: 4
This vignette demonstrates the use of the Presto package in Seurat. Commands and parameters are based off of the Presto tutorial. If you use Presto in your work, please cite:
Presto scales Wilcoxon and auROC analyses to millions of observations
Ilya Korsunsky, Aparna Nathan, Nghia Millard, Soumya Raychaudhuri
bioRxiv, 2019.
Pre-print: https://www.biorxiv.org/content/10.1101/653253v1.full.pdf
GitHub: https://github.com/immunogenomics/presto
if (!requireNamespace("presto")) { remotes::install_github("immunogenomics/presto", upgrade = FALSE) } knitr::opts_chunk$set( tidy = TRUE, tidy.opts = list(width.cutoff = 95), message = FALSE, warning = FALSE )
Prerequisites to install:
library(presto) library(Seurat) library(SeuratData) library(SeuratWrappers)
To learn more about this dataset, type ?pbmc3k
InstallData("pbmc3k") data("pbmc3k") pbmc3k <- NormalizeData(pbmc3k) Idents(pbmc3k) <- 'seurat_annotations' diffexp.B.Mono <- RunPresto(pbmc3k, 'CD14+ Mono', 'B') head(diffexp.B.Mono, 10) diffexp.all <- RunPrestoAll(pbmc3k) head(diffexp.all[diffexp.all$cluster=='B', ], 10)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.