R/GSEA.Aux1.R

Defines functions GSEA.NormalizeCols GSEA.NormalizeRows GSEA.VarFilter GSEA.Threshold GSEA.ReadClsFile GSEA.Gct2Frame2 GSEA.Gct2Frame GSEA.Res2Frame GSEA.HeatMapPlot GSEA.EnrichmentScore2 OLD.GSEA.EnrichmentScore GSEA.EnrichmentScore GSEA.GeneRanking

# G S E A -- Gene Set Enrichment Analysis

# Auxiliary functions and definitions 
GSEA.GeneRanking <- function(A, class.labels, gene.labels, nperm, permutation.type = 0, sigma.correction = "GeneCluster", fraction=1.0, replace=F, reverse.sign= F) { 
  
  # This function ranks the genes according to the signal to noise ratio for the actual phenotype and also random permutations and bootstrap  
  # subsamples of both the observed and random phenotypes. It uses matrix operations to implement the signal to noise calculation 
  # in stages and achieves fast execution speed. It supports two types of permutations: random (unbalanced) and balanced. 
  # It also supports subsampling and bootstrap by using masking and multiple-count variables.  When "fraction" is set to 1 (default)
  # the there is no subsampling or boostrapping and the matrix of observed signal to noise ratios will have the same value for 
  # all permutations. This is wasteful but allows to support all the multiple options with the same code. Notice that the second 
  # matrix for the null distribution will still have the values for the random permutations 
  # (null distribution). This mode (fraction = 1.0) is the defaults, the recommended one and the one used in the examples.
  # It is also the one that has be tested more thoroughly. The resampling and boostrapping options are intersting to obtain 
  # smooth estimates of the observed distribution but its is left for the expert user who may want to perform some sanity 
  # checks before trusting the code.
  #
  # Inputs:
  #   A: Matrix of gene expression values (rows are genes, columns are samples) 
  #   class.labels: Phenotype of class disticntion of interest. A vector of binary labels having first the 1's and then the 0's 
  #   gene.labels: gene labels. Vector of probe ids or accession numbers for the rows of the expression matrix 
  #   nperm: Number of random permutations/bootstraps to perform 
  #   permutation.type: Permutation type: 0 = unbalanced, 1 = balanced. For experts only (default: 0) 
  #   sigma.correction: Correction to the signal to noise ratio (Default = GeneCluster, a choice to support the way it was handled in a previous package) 
  #   fraction: Subsampling fraction. Set to 1.0 (no resampling). For experts only (default: 1.0) 
  #   replace: Resampling mode (replacement or not replacement). For experts only (default: F) 
  #   reverse.sign: Reverse direction of gene list (default = F)
  #
  # Outputs:
  #   s2n.matrix: Matrix with random permuted or bootstraps signal to noise ratios (rows are genes, columns are permutations or bootstrap subsamplings
  #   obs.s2n.matrix: Matrix with observed signal to noise ratios (rows are genes, columns are boostraps subsamplings. If fraction is set to 1.0 then all the columns have the same values
  #   order.matrix: Matrix with the orderings that will sort the columns of the obs.s2n.matrix in decreasing s2n order
  #   obs.order.matrix: Matrix with the orderings that will sort the columns of the s2n.matrix in decreasing s2n order
  #
  # The Broad Institute
  # SOFTWARE COPYRIGHT NOTICE AGREEMENT
  # This software and its documentation are copyright 2003 by the
  # Broad Institute/Massachusetts Institute of Technology.
  # All rights are reserved.
  #
  # This software is supplied without any warranty or guaranteed support
  # whatsoever. Neither the Broad Institute nor MIT can be responsible for
  # its use, misuse, or functionality.
  
  A <- A + 0.00000001
  
  N <- length(A[,1])
  Ns <- length(A[1,])
  
  subset.mask <- matrix(0, nrow=Ns, ncol=nperm)
  reshuffled.class.labels1 <- matrix(0, nrow=Ns, ncol=nperm)
  reshuffled.class.labels2 <- matrix(0, nrow=Ns, ncol=nperm)
  class.labels1 <- matrix(0, nrow=Ns, ncol=nperm)
  class.labels2 <- matrix(0, nrow=Ns, ncol=nperm)
  
  order.matrix <- matrix(0, nrow = N, ncol = nperm)
  obs.order.matrix <- matrix(0, nrow = N, ncol = nperm)
  s2n.matrix <- matrix(0, nrow = N, ncol = nperm)
  obs.s2n.matrix <- matrix(0, nrow = N, ncol = nperm)
  
  obs.gene.labels <- vector(length = N, mode="character")
  obs.gene.descs <- vector(length = N, mode="character")
  obs.gene.symbols <- vector(length = N, mode="character")
  
  M1 <- matrix(0, nrow = N, ncol = nperm)
  M2 <- matrix(0, nrow = N, ncol = nperm)
  S1 <- matrix(0, nrow = N, ncol = nperm)
  S2 <- matrix(0, nrow = N, ncol = nperm)
  
  gc()
  
  C <- split(class.labels, class.labels)
  class1.size <- length(C[[1]])
  class2.size <- length(C[[2]])
  class1.index <- seq(1, class1.size, 1)
  class2.index <- seq(class1.size + 1, class1.size + class2.size, 1)
  
  for (r in 1:nperm) {
    class1.subset <- sample(class1.index, size = ceiling(class1.size*fraction), replace = replace)
    class2.subset <- sample(class2.index, size = ceiling(class2.size*fraction), replace = replace)
    class1.subset.size <- length(class1.subset)
    class2.subset.size <- length(class2.subset)
    subset.class1 <- rep(0, class1.size)
    for (i in 1:class1.size) {
      if (is.element(class1.index[i], class1.subset)) {
        subset.class1[i] <- 1
      }
    }
    subset.class2 <- rep(0, class2.size)
    for (i in 1:class2.size) {
      if (is.element(class2.index[i], class2.subset)) {
        subset.class2[i] <- 1
      }
    }
    subset.mask[, r] <- as.numeric(c(subset.class1, subset.class2))
    fraction.class1 <- class1.size/Ns
    fraction.class2 <- class2.size/Ns
    
    if (permutation.type == 0) { # random (unbalanced) permutation
      full.subset <- c(class1.subset, class2.subset)
      label1.subset <- sample(full.subset, size = Ns * fraction.class1)
      reshuffled.class.labels1[, r] <- rep(0, Ns)
      reshuffled.class.labels2[, r] <- rep(0, Ns)
      class.labels1[, r] <- rep(0, Ns)
      class.labels2[, r] <- rep(0, Ns)
      for (i in 1:Ns) {
        m1 <- sum(!is.na(match(label1.subset, i)))
        m2 <- sum(!is.na(match(full.subset, i)))
        reshuffled.class.labels1[i, r] <- m1
        reshuffled.class.labels2[i, r] <- m2 - m1
        if (i <= class1.size) {
          class.labels1[i, r] <- m2
          class.labels2[i, r] <- 0
        } else {
          class.labels1[i, r] <- 0
          class.labels2[i, r] <- m2
        }
      }
      
    } else if (permutation.type == 1) { # proportional (balanced) permutation
      
      class1.label1.subset <- sample(class1.subset, size = ceiling(class1.subset.size*fraction.class1))
      class2.label1.subset <- sample(class2.subset, size = floor(class2.subset.size*fraction.class1))
      reshuffled.class.labels1[, r] <- rep(0, Ns)
      reshuffled.class.labels2[, r] <- rep(0, Ns)
      class.labels1[, r] <- rep(0, Ns)
      class.labels2[, r] <- rep(0, Ns)
      for (i in 1:Ns) {
        if (i <= class1.size) {
          m1 <- sum(!is.na(match(class1.label1.subset, i)))
          m2 <- sum(!is.na(match(class1.subset, i)))
          reshuffled.class.labels1[i, r] <- m1
          reshuffled.class.labels2[i, r] <- m2 - m1
          class.labels1[i, r] <- m2
          class.labels2[i, r] <- 0
        } else {
          m1 <- sum(!is.na(match(class2.label1.subset, i)))
          m2 <- sum(!is.na(match(class2.subset, i)))
          reshuffled.class.labels1[i, r] <- m1
          reshuffled.class.labels2[i, r] <- m2 - m1
          class.labels1[i, r] <- 0
          class.labels2[i, r] <- m2
        }
      }
    }
  }
  
  # compute S2N for the random permutation matrix
  
  P <- reshuffled.class.labels1 * subset.mask
  n1 <- sum(P[,1])         
  M1 <- A %*% P
  M1 <- M1/n1      
  gc()
  A2 <- A*A        
  S1 <- A2 %*% P   
  S1 <- S1/n1 - M1*M1    
  S1 <- sqrt(abs((n1/(n1-1)) * S1))   
  gc()
  P <- reshuffled.class.labels2 * subset.mask
  n2 <- sum(P[,1])           
  M2 <- A %*% P           
  M2 <- M2/n2          
  gc()
  A2 <- A*A           
  S2 <- A2 %*% P      
  S2 <- S2/n2 - M2*M2 
  S2 <- sqrt(abs((n2/(n2-1)) * S2))
  rm(P)
  rm(A2)
  gc()
  
  if (sigma.correction == "GeneCluster") {  # small sigma "fix" as used in GeneCluster
    S2 <- ifelse(0.2*abs(M2) < S2, S2, 0.2*abs(M2))
    S2 <- ifelse(S2 == 0, 0.2, S2)
    S1 <- ifelse(0.2*abs(M1) < S1, S1, 0.2*abs(M1))
    S1 <- ifelse(S1 == 0, 0.2, S1)
    gc()
  }
  
  M1 <- M1 - M2
  rm(M2)
  gc()
  S1 <- S1 + S2
  rm(S2)
  gc()
  
  s2n.matrix <- M1/S1
  
  if (reverse.sign == T) {
    s2n.matrix <- - s2n.matrix
  }
  gc()
  
  for (r in 1:nperm) {
    order.matrix[, r] <- order(s2n.matrix[, r], decreasing=T)            
  }
  
  # compute S2N for the "observed" permutation matrix
  
  P <- class.labels1 * subset.mask
  n1 <- sum(P[,1])         
  M1 <- A %*% P
  M1 <- M1/n1      
  gc()
  A2 <- A*A        
  S1 <- A2 %*% P   
  S1 <- S1/n1 - M1*M1    
  S1 <- sqrt(abs((n1/(n1-1)) * S1))   
  gc()
  P <- class.labels2 * subset.mask
  n2 <- sum(P[,1])           
  M2 <- A %*% P           
  M2 <- M2/n2          
  gc()
  A2 <- A*A           
  S2 <- A2 %*% P      
  S2 <- S2/n2 - M2*M2 
  S2 <- sqrt(abs((n2/(n2-1)) * S2))
  rm(P)
  rm(A2)
  gc()
  
  if (sigma.correction == "GeneCluster") {  # small sigma "fix" as used in GeneCluster
    S2 <- ifelse(0.2*abs(M2) < S2, S2, 0.2*abs(M2))
    S2 <- ifelse(S2 == 0, 0.2, S2)
    S1 <- ifelse(0.2*abs(M1) < S1, S1, 0.2*abs(M1))
    S1 <- ifelse(S1 == 0, 0.2, S1)
    gc()
  } 
  
  M1 <- M1 - M2
  rm(M2)
  gc()
  S1 <- S1 + S2
  rm(S2)
  gc()
  
  obs.s2n.matrix <- M1/S1
  gc()
  
  if (reverse.sign == T) {
    obs.s2n.matrix <- - obs.s2n.matrix
  }
  
  for (r in 1:nperm) {
    obs.order.matrix[,r] <- order(obs.s2n.matrix[,r], decreasing=T)            
  }
  
  return(list(s2n.matrix = s2n.matrix, 
              obs.s2n.matrix = obs.s2n.matrix, 
              order.matrix = order.matrix,
              obs.order.matrix = obs.order.matrix))
}

GSEA.EnrichmentScore <- function(gene.list, gene.set, weighted.score.type = 1, correl.vector = NULL) {  
  #
  # Computes the weighted GSEA score of gene.set in gene.list. 
  # The weighted score type is the exponent of the correlation 
  # weight: 0 (unweighted = Kolmogorov-Smirnov), 1 (weighted), and 2 (over-weighted). When the score type is 1 or 2 it is 
  # necessary to input the correlation vector with the values in the same order as in the gene list.
  #
  # Inputs:
  #   gene.list: The ordered gene list (e.g. integers indicating the original position in the input dataset)  
  #   gene.set: A gene set (e.g. integers indicating the location of those genes in the input dataset) 
  #   weighted.score.type: Type of score: weight: 0 (unweighted = Kolmogorov-Smirnov), 1 (weighted), and 2 (over-weighted)  
  #  correl.vector: A vector with the coorelations (e.g. signal to noise scores) corresponding to the genes in the gene list 
  #
  # Outputs:
  #   ES: Enrichment score (real number between -1 and +1) 
  #   arg.ES: Location in gene.list where the peak running enrichment occurs (peak of the "mountain") 
  #   RES: Numerical vector containing the running enrichment score for all locations in the gene list 
  #   tag.indicator: Binary vector indicating the location of the gene sets (1's) in the gene list 
  #
  # The Broad Institute
  # SOFTWARE COPYRIGHT NOTICE AGREEMENT
  # This software and its documentation are copyright 2003 by the
  # Broad Institute/Massachusetts Institute of Technology.
  # All rights are reserved.
  #
  # This software is supplied without any warranty or guaranteed support
  # whatsoever. Neither the Broad Institute nor MIT can be responsible for
  # its use, misuse, or functionality.
  
  tag.indicator <- sign(match(gene.list, gene.set, nomatch=0))    # notice that the sign is 0 (no tag) or 1 (tag) 
  no.tag.indicator <- 1 - tag.indicator 
  N <- length(gene.list) 
  Nh <- length(gene.set) 
  Nm <-  N - Nh 
  if (weighted.score.type == 0) {
    correl.vector <- rep(1, N)
  }
  alpha <- weighted.score.type
  correl.vector <- abs(correl.vector**alpha)
  sum.correl.tag    <- sum(correl.vector[tag.indicator == 1])
  norm.tag    <- 1.0/sum.correl.tag
  norm.no.tag <- 1.0/Nm
  RES <- cumsum(tag.indicator * correl.vector * norm.tag - no.tag.indicator * norm.no.tag)      
  max.ES <- max(RES)
  min.ES <- min(RES)
  if (max.ES > - min.ES) {
    #      ES <- max.ES
    ES <- signif(max.ES, digits = 5)
    arg.ES <- which.max(RES)
  } else {
    #      ES <- min.ES
    ES <- signif(min.ES, digits=5)
    arg.ES <- which.min(RES)
  }
  return(list(ES = ES, arg.ES = arg.ES, RES = RES, indicator = tag.indicator))    
}


OLD.GSEA.EnrichmentScore <- function(gene.list, gene.set) {  
  #
  # Computes the original GSEA score from Mootha et al 2003 of gene.set in gene.list 
  #
  # Inputs:
  #   gene.list: The ordered gene list (e.g. integers indicating the original position in the input dataset)  
  #   gene.set: A gene set (e.g. integers indicating the location of those genes in the input dataset) 
  #
  # Outputs:
  #   ES: Enrichment score (real number between -1 and +1) 
  #   arg.ES: Location in gene.list where the peak running enrichment occurs (peak of the "mountain") 
  #   RES: Numerical vector containing the running enrichment score for all locations in the gene list 
  #   tag.indicator: Binary vector indicating the location of the gene sets (1's) in the gene list 
  #
  # The Broad Institute
  # SOFTWARE COPYRIGHT NOTICE AGREEMENT
  # This software and its documentation are copyright 2003 by the
  # Broad Institute/Massachusetts Institute of Technology.
  # All rights are reserved.
  #
  # This software is supplied without any warranty or guaranteed support
  # whatsoever. Neither the Broad Institute nor MIT can be responsible for
  # its use, misuse, or functionality.
  
  tag.indicator <- sign(match(gene.list, gene.set, nomatch=0))    # notice that the sign is 0 (no tag) or 1 (tag) 
  no.tag.indicator <- 1 - tag.indicator 
  N <- length(gene.list) 
  Nh <- length(gene.set) 
  Nm <-  N - Nh 
  
  norm.tag    <- sqrt((N - Nh)/Nh)
  norm.no.tag <- sqrt(Nh/(N - Nh))
  
  RES <- cumsum(tag.indicator * norm.tag - no.tag.indicator * norm.no.tag)      
  max.ES <- max(RES)
  min.ES <- min(RES)
  if (max.ES > - min.ES) {
    ES <- signif(max.ES, digits=5)
    arg.ES <- which.max(RES)
  } else {
    ES <- signif(min.ES, digits=5)
    arg.ES <- which.min(RES)
  }
  return(list(ES = ES, arg.ES = arg.ES, RES = RES, indicator = tag.indicator))    
}

GSEA.EnrichmentScore2 <- function(gene.list, gene.set, weighted.score.type = 1, correl.vector = NULL) {  
  #
  # Computes the weighted GSEA score of gene.set in gene.list. It is the same calculation as in 
  # GSEA.EnrichmentScore but faster (x8) without producing the RES, arg.RES and tag.indicator outputs.
  # This call is intended to be used to asses the enrichment of random permutations rather than the 
  # observed one.
  # The weighted score type is the exponent of the correlation 
  # weight: 0 (unweighted = Kolmogorov-Smirnov), 1 (weighted), and 2 (over-weighted). When the score type is 1 or 2 it is 
  # necessary to input the correlation vector with the values in the same order as in the gene list.
  #
  # Inputs:
  #   gene.list: The ordered gene list (e.g. integers indicating the original position in the input dataset)  
  #   gene.set: A gene set (e.g. integers indicating the location of those genes in the input dataset) 
  #   weighted.score.type: Type of score: weight: 0 (unweighted = Kolmogorov-Smirnov), 1 (weighted), and 2 (over-weighted)  
  #  correl.vector: A vector with the coorelations (e.g. signal to noise scores) corresponding to the genes in the gene list 
  #
  # Outputs:
  #   ES: Enrichment score (real number between -1 and +1) 
  #
  # The Broad Institute
  # SOFTWARE COPYRIGHT NOTICE AGREEMENT
  # This software and its documentation are copyright 2003 by the
  # Broad Institute/Massachusetts Institute of Technology.
  # All rights are reserved.
  #
  # This software is supplied without any warranty or guaranteed support
  # whatsoever. Neither the Broad Institute nor MIT can be responsible for
  # its use, misuse, or functionality.
  
  N <- length(gene.list) 
  Nh <- length(gene.set) 
  Nm <-  N - Nh 
  
  loc.vector <- vector(length=N, mode="numeric")
  peak.res.vector <- vector(length=Nh, mode="numeric")
  valley.res.vector <- vector(length=Nh, mode="numeric")
  tag.correl.vector <- vector(length=Nh, mode="numeric")
  tag.diff.vector <- vector(length=Nh, mode="numeric")
  tag.loc.vector <- vector(length=Nh, mode="numeric")
  
  loc.vector[gene.list] <- seq(1, N)
  tag.loc.vector <- loc.vector[gene.set]
  
  tag.loc.vector <- sort(tag.loc.vector, decreasing = F)
  
  if (weighted.score.type == 0) {
    tag.correl.vector <- rep(1, Nh)
  } else if (weighted.score.type == 1) {
    tag.correl.vector <- correl.vector[tag.loc.vector]
    tag.correl.vector <- abs(tag.correl.vector)
  } else if (weighted.score.type == 2) {
    tag.correl.vector <- correl.vector[tag.loc.vector]*correl.vector[tag.loc.vector]
    tag.correl.vector <- abs(tag.correl.vector)
  } else {
    tag.correl.vector <- correl.vector[tag.loc.vector]**weighted.score.type
    tag.correl.vector <- abs(tag.correl.vector)
  }
  
  norm.tag <- 1.0/sum(tag.correl.vector)
  tag.correl.vector <- tag.correl.vector * norm.tag
  norm.no.tag <- 1.0/Nm
  tag.diff.vector[1] <- (tag.loc.vector[1] - 1) 
  tag.diff.vector[2:Nh] <- tag.loc.vector[2:Nh] - tag.loc.vector[1:(Nh - 1)] - 1
  tag.diff.vector <- tag.diff.vector * norm.no.tag
  peak.res.vector <- cumsum(tag.correl.vector - tag.diff.vector)
  valley.res.vector <- peak.res.vector - tag.correl.vector
  max.ES <- max(peak.res.vector)
  min.ES <- min(valley.res.vector)
  ES <- signif(ifelse(max.ES > - min.ES, max.ES, min.ES), digits=5)
  
  return(list(ES = ES))
  
}

GSEA.HeatMapPlot <- function(V, row.names = F, col.labels, col.classes, col.names = F, main = " ", xlab=" ", ylab=" ") {
  #
  # Plots a heatmap "pinkogram" of a gene expression matrix including phenotype vector and gene, sample and phenotype labels
  #
  # The Broad Institute
  # SOFTWARE COPYRIGHT NOTICE AGREEMENT
  # This software and its documentation are copyright 2003 by the
  # Broad Institute/Massachusetts Institute of Technology.
  # All rights are reserved.
  #
  # This software is supplied without any warranty or guaranteed support
  # whatsoever. Neither the Broad Institute nor MIT can be responsible for
  # its use, misuse, or functionality.
  
  n.rows <- length(V[,1])
  n.cols <- length(V[1,])
  row.mean <- apply(V, MARGIN=1, FUN=mean)
  row.sd <- apply(V, MARGIN=1, FUN=sd)
  row.n <- length(V[,1])
  for (i in 1:n.rows) {
    if (row.sd[i] == 0) {
      V[i,] <- 0
    } else {
      V[i,] <- (V[i,] - row.mean[i])/(0.5 * row.sd[i])
    }
    V[i,] <- ifelse(V[i,] < -6, -6, V[i,])
    V[i,] <- ifelse(V[i,] > 6, 6, V[i,])
  }
  
  mycol <- c("#0000FF", "#0000FF", "#4040FF", "#7070FF", "#8888FF", "#A9A9FF", "#D5D5FF", "#EEE5EE", "#FFAADA", "#FF9DB0", "#FF7080", "#FF5A5A", "#FF4040", "#FF0D1D", "#FF0000") # blue-pinkogram colors. The first and last are the colors to indicate the class vector (phenotype). This is the 1998-vintage, pre-gene cluster, original pinkogram color map
  
  mid.range.V <- mean(range(V)) - 0.1
  heatm <- matrix(0, nrow = n.rows + 1, ncol = n.cols)
  heatm[1:n.rows,] <- V[seq(n.rows, 1, -1),]
  heatm[n.rows + 1,] <- ifelse(col.labels == 0, 7, -7)
  image(1:n.cols, 1:(n.rows + 1), t(heatm), col=mycol, axes=FALSE, main=main, xlab= xlab, ylab=ylab)
  
  if (length(row.names) > 1) {
    numC <- nchar(row.names)
    size.row.char <- 35/(n.rows + 5)
    size.col.char <- 25/(n.cols + 5)
    maxl <- floor(n.rows/1.6)
    for (i in 1:n.rows) {
      row.names[i] <- substr(row.names[i], 1, maxl)
    }
    row.names <- c(row.names[seq(n.rows, 1, -1)], "Class")
    axis(2, at=1:(n.rows + 1), labels=row.names, adj= 0.5, tick=FALSE, las = 1, cex.axis=size.row.char, font.axis=2, line=-1)
  }
  
  if (length(col.names) > 1) {
    axis(1, at=1:n.cols, labels=col.names, tick=FALSE, las = 3, cex.axis=size.col.char, font.axis=2, line=-1)
  }
  
  C <- split(col.labels, col.labels)
  class1.size <- length(C[[1]])
  class2.size <- length(C[[2]])
  axis(3, at=c(floor(class1.size/2),class1.size + floor(class2.size/2)), labels=col.classes, tick=FALSE, las = 1, cex.axis=1.25, font.axis=2, line=-1)
  
  return()
}

GSEA.Res2Frame <- function(filename = "NULL") { 
  #
  # Reads a gene expression dataset in RES format and converts it into an R data frame
  #
  # The Broad Institute
  # SOFTWARE COPYRIGHT NOTICE AGREEMENT
  # This software and its documentation are copyright 2003 by the
  # Broad Institute/Massachusetts Institute of Technology.
  # All rights are reserved.
  #
  # This software is supplied without any warranty or guaranteed support
  # whatsoever. Neither the Broad Institute nor MIT can be responsible for
  # its use, misuse, or functionality.
  
  header.cont <- readLines(filename, n = 1)
  temp <- unlist(strsplit(header.cont, "\t"))
  colst <- length(temp)
  header.labels <- temp[seq(3, colst, 2)]
  ds <- read.delim(filename, header=F, row.names = 2, sep="\t", skip=3, blank.lines.skip=T, comment.char="", as.is=T)
  colst <- length(ds[1,])
  cols <- (colst - 1)/2
  rows <- length(ds[,1])
  A <- matrix(nrow=rows - 1, ncol=cols)
  A <- ds[1:rows, seq(2, colst, 2)]
  table1 <- data.frame(A)
  names(table1) <- header.labels
  return(table1)
}

GSEA.Gct2Frame <- function(filename = "NULL") { 
  #
  # Reads a gene expression dataset in GCT format and converts it into an R data frame
  #
  # The Broad Institute
  # SOFTWARE COPYRIGHT NOTICE AGREEMENT
  # This software and its documentation are copyright 2003 by the
  # Broad Institute/Massachusetts Institute of Technology.
  # All rights are reserved.
  #
  # This software is supplied without any warranty or guaranteed support
  # whatsoever. Neither the Broad Institute nor MIT can be responsible for
  # its use, misuse, or functionality.
  ds <- read.delim(filename, header=T, sep="\t", skip=2, row.names=1, blank.lines.skip=T, comment.char="", as.is=T)
  ds <- ds[-1]
  return(ds)
}

GSEA.Gct2Frame2 <- function(filename = "NULL") { 
  #
  # Reads a gene expression dataset in GCT format and converts it into an R data frame
  #
  # The Broad Institute
  # SOFTWARE COPYRIGHT NOTICE AGREEMENT
  # This software and its documentation are copyright 2003 by the
  # Broad Institute/Massachusetts Institute of Technology.
  # All rights are reserved.
  #
  # This software is supplied without any warranty or guaranteed support
  # whatsoever. Neither the Broad Institute nor MIT can be responsible for
  # its use, misuse, or functionality.
  content <- readLines(filename)
  content <- content[-1]
  content <- content[-1]
  col.names <- noquote(unlist(strsplit(content[1], "\t")))
  col.names <- col.names[c(-1, -2)]
  num.cols <- length(col.names)
  content <- content[-1]
  num.lines <- length(content)
  
  
  row.nam <- vector(length=num.lines, mode="character")
  row.des <- vector(length=num.lines, mode="character")
  m <- matrix(0, nrow=num.lines, ncol=num.cols)
  
  for (i in 1:num.lines) {
    line.list <- noquote(unlist(strsplit(content[i], "\t")))
    row.nam[i] <- noquote(line.list[1])
    row.des[i] <- noquote(line.list[2])
    line.list <- line.list[c(-1, -2)]
    for (j in 1:length(line.list)) {
      m[i, j] <- as.numeric(line.list[j])
    }
  }
  ds <- data.frame(m)
  names(ds) <- col.names
  row.names(ds) <- row.nam
  return(ds)
}

GSEA.ReadClsFile <- function(file = "NULL") { 
  #
  # Reads a class vector CLS file and defines phenotype and class labels vectors for the samples in a gene expression file (RES or GCT format)
  #
  # The Broad Institute
  # SOFTWARE COPYRIGHT NOTICE AGREEMENT
  # This software and its documentation are copyright 2003 by the
  # Broad Institute/Massachusetts Institute of Technology.
  # All rights are reserved.
  #
  # This software is supplied without any warranty or guaranteed support
  # whatsoever. Neither the Broad Institute nor MIT can be responsible for
  # its use, misuse, or functionality.
  
  cls.cont <- readLines(file)
  num.lines <- length(cls.cont)
  class.list <- unlist(strsplit(cls.cont[[3]], " "))
  s <- length(class.list)
  t <- table(class.list)
  l <- length(t)
  phen <- vector(length=l, mode="character")
  phen.label <- vector(length=l, mode="numeric")
  class.v <- vector(length=s, mode="numeric")
  for (i in 1:l) {
    phen[i] <- noquote(names(t)[i])
    phen.label[i] <- i - 1
  }
  for (i in 1:s) {
    for (j in 1:l) {
      if (class.list[i] == phen[j]) {
        class.v[i] <- phen.label[j]
      }
    }
  }
  return(list(phen = phen, class.v = class.v))
}

GSEA.Threshold <- function(V, thres, ceil) { 
  #
  # Threshold and ceiling pre-processing for gene expression matrix
  #
  # The Broad Institute
  # SOFTWARE COPYRIGHT NOTICE AGREEMENT
  # This software and its documentation are copyright 2003 by the
  # Broad Institute/Massachusetts Institute of Technology.
  # All rights are reserved.
  #
  # This software is supplied without any warranty or guaranteed support
  # whatsoever. Neither the Broad Institute nor MIT can be responsible for
  # its use, misuse, or functionality.
  
  V[V < thres] <- thres
  V[V > ceil] <- ceil
  return(V)
}

GSEA.VarFilter <- function(V, fold, delta, gene.names = "NULL") { 
  #
  # Variation filter pre-processing for gene expression matrix
  #
  # The Broad Institute
  # SOFTWARE COPYRIGHT NOTICE AGREEMENT
  # This software and its documentation are copyright 2003 by the
  # Broad Institute/Massachusetts Institute of Technology.
  # All rights are reserved.
  #
  # This software is supplied without any warranty or guaranteed support
  # whatsoever. Neither the Broad Institute nor MIT can be responsible for
  # its use, misuse, or functionality.
  
  cols <- length(V[1,])
  rows <- length(V[,1])
  row.max <- apply(V, MARGIN=1, FUN=max)
  row.min <- apply(V, MARGIN=1, FUN=min)
  flag <- array(dim=rows)
  flag <- (row.max /row.min > fold) & (row.max - row.min > delta)
  size <- sum(flag)
  B <- matrix(0, nrow = size, ncol = cols)
  j <- 1
  if (gene.names == "NULL") {
    for (i in 1:rows) {
      if (flag[i]) {
        B[j,] <- V[i,]
        j <- j + 1
      }
    }
    return(B)
  } else {
    new.list <- vector(mode = "character", length = size)
    for (i in 1:rows) {
      if (flag[i]) {
        B[j,] <- V[i,]
        new.list[j] <- gene.names[i]
        j <- j + 1
      }
    }
    return(list(V = B, new.list = new.list))
  }
}

GSEA.NormalizeRows <- function(V) { 
  #
  # Stardardize rows of a gene expression matrix
  #
  # The Broad Institute
  # SOFTWARE COPYRIGHT NOTICE AGREEMENT
  # This software and its documentation are copyright 2003 by the
  # Broad Institute/Massachusetts Institute of Technology.
  # All rights are reserved.
  #
  # This software is supplied without any warranty or guaranteed support
  # whatsoever. Neither the Broad Institute nor MIT can be responsible for
  # its use, misuse, or functionality.
  
  row.mean <- apply(V, MARGIN=1, FUN=mean)
  row.sd <- apply(V, MARGIN=1, FUN=sd)
  row.n <- length(V[,1])
  for (i in 1:row.n) {
    if (row.sd[i] == 0) {
      V[i,] <- 0
    } else {
      V[i,] <- (V[i,] - row.mean[i])/row.sd[i]
    }
  }
  return(V)
}

GSEA.NormalizeCols <- function(V) { 
  #
  # Stardardize columns of a gene expression matrix
  #
  # The Broad Institute
  # SOFTWARE COPYRIGHT NOTICE AGREEMENT
  # This software and its documentation are copyright 2003 by the
  # Broad Institute/Massachusetts Institute of Technology.
  # All rights are reserved.
  #
  # This software is supplied without any warranty or guaranteed support
  # whatsoever. Neither the Broad Institute nor MIT can be responsible for
  # its use, misuse, or functionality.
  
  col.mean <- apply(V, MARGIN=2, FUN=mean)
  col.sd <- apply(V, MARGIN=2, FUN=sd)
  col.n <- length(V[1,])
  for (i in 1:col.n) {
    if (col.sd[i] == 0) {
      V[i,] <- 0
    } else {
      V[,i] <- (V[,i] - col.mean[i])/col.sd[i]
    }
  }
  return(V)
}

# end of auxiliary functions

# ----------------------------------------------------------------------------------------
# Main GSEA Analysis Function that implements the entire methodology
scfurl/probedeeper documentation built on Oct. 1, 2018, 3:33 a.m.