suppressMessages(library(mlr3))
suppressMessages(library(mlr3tuning))
suppressMessages(library(mlrintermbo))
suppressMessages(library(mlr3learners))
suppressMessages(library(mlr3extralearners))
suppressMessages(library(mlr3pipelines))
suppressMessages(library(paradox))
suppressMessages(library(mlr3oml))
library(R6)
source("classifInterpretML.R")
source("classifInterpretML_reticulate.R")
#source("../load-albert.R")
#task = ts_file
robustify = po("removeconstants", id = "removeconstants_before") %>>%
po("imputemedian", id = "imputemedian_num", affect_columns = selector_type(c("integer", "numeric"))) %>>%
po("imputemode", id = "imputemode_fct", affect_columns = selector_type(c("character", "factor", "ordered"))) %>>%
po("collapsefactors", target_level_count = 10) %>>%
po("removeconstants", id = "removeconstants_after")
task = tsk("spam")
#task = tsk("oml", task_id = 31)
lrn1 = lrn("classif.interpretML_reticulate", max_rounds = 500L, predict_type = "prob", learning_rate = 0.01,
validation_size = 0, random_state = 1337, n_jobs = parallel::detectCores())
#lrn1$train(task)
#lrn1$predict(task)
#lrn2 = lrn("classif.interpretML", max_rounds = 500L, predict_type = "prob", learning_rate = 0.01,
# validation_size = 0, random_state = 1337)
bmr = benchmark(benchmark_grid(
tasks = list(
#tsk("oml", task_id = 168337),
tsk("oml", task_id = 7592),
tsk("oml", task_id = 168335)),
learners = list(robustify %>>% lrn1),
resamplings = rsmp("cv", folds = 3)))
bmr$score(msrs(c("classif.auc", "time_train")))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.