suppressMessages(library(mlr3))
suppressMessages(library(mlr3tuning))
suppressMessages(library(mlr3learners))
suppressMessages(library(mlr3extralearners))
suppressMessages(library(mlr3pipelines))
suppressMessages(library(mlr3pipelines))
suppressMessages(requireNamespace("mlr3oml"))
base_dir = here::here()
bm_dir = paste0(base_dir, "/benchmark/mlr-bmr/")
load("config.Rda")
library(R6)
source(paste0(bm_dir, "learner-src/classifCompboost.R"))
source(paste0(bm_dir, "learner-src/classifInterpretML.R"))
source(paste0(bm_dir, "learners.R"))
if (config$type == "oml") {
ts = tsk("oml", task_id = as.integer(config$task))
}
if (config$type == "script") {
source(paste0("load-", config$name, ".R"))
ts = ts_file
}
robustify = po("removeconstants", id = "removeconstants_before") %>>%
po("imputemedian", id = "imputemedian_num", affect_columns = selector_type(c("integer", "numeric"))) %>>%
po("imputemode", id = "imputemode_fct", affect_columns = selector_type(c("character", "factor", "ordered"))) %>>%
po("collapsefactors", target_level_count = 10) %>>%
po("removeconstants", id = "removeconstants_after")
# Trigger compboostSplines as flag when the fitting starts. compboostSplines
# can be extracted by valgrind.
tmp = compboostSplines::createKnots(1:10, 3, 2)
lrn = learners_classif[[config$learner]]
lrn = GraphLearner$new(robustify %>>% lrn)
lrn$train(ts)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.