R/readTHOR.R

Defines functions read.THOR

#' read.THOR  A wrapper function for reading and rotating data for THOR.
#'
#' @param file 
#' @param raw 
#'
#' @return
#' @export
#'
#' @examples
read.THOR = function(file,raw){
  source("prepTHOR.R");
  #######################################################
  ## vars   
  ######################################################
  
  ## A function to prepare the data matrices
  prep.M  <- function(M,raw=FALSE){
    if(raw==FALSE){
      M <-subset(M,M$Ref > 0 & m$y > 0);
    }
    M <- M[order(M[,1]),];
    M = as.data.frame(M);
    
    colnames(M) = c("Ref", "y")
    return(M);
  }
  
  ## A function to rotate data vs Ref
  rotate.M = function (M){
    
    M = as.data.frame(M);
    M = M[order(M$Ref, M$y),]
    
    ### ROTATION matrix
    theta = 2 * pi / 8;   ## 45degree
    cc = cos(theta)
    ss = sin(theta)
    rot.matrix = matrix(c(cc, ss, -ss, cc), 2, 2)
    
    rM = as.matrix(M) %*% rot.matrix
    rM = as.data.frame(rM)
    colnames(rM) = c("Ref", "y")
    return (rM);
  }
  
  
  
  dset = NULL;   # the dataset
  names = NULL;  # 
  n_vars = NULL; # n variables per sample / replicate
  M = list();    # data matrices
  rM = list();   # rotated data matrices
  #######################################################
  
  ## Read the user assigned Abacus file
  data <- read.delim(file,header=TRUE,row.names=NULL);
  ids = data[,1];
  
  ## Number of samples
  N_samples = length(data[1,])-2;
  
  
  ## Loop to grab the sample lengths 
  i=3;j=1;
  while (i < N_samples + 3 ){
    
    ld = data[,i];
    if(raw==FALSE){
      dset = cbind(dset,log(ld));
    }
    else{ dset = cbind(dset,ld);}
    
    n_vars[j] = length(which(data[,i]>0));
    
    names[j] = paste("R",j,sep="");
    
    i=i+1;j=j+1;
    
  }
  
  ##  Group data, calculate mean and order data
  meanCol = length(dset[1,])+1;
  dset = cbind(dset,(apply(dset,1,mean)));
  dset = dset[order(-dset[,meanCol]),];
  
  rownames(dset) = ids;	
  dset = subset(dset,dset[,meanCol]>0);
  dset = dset[,-meanCol];	
  
  colnames(dset) = names;
  dset= as.data.frame(dset)
  
  ## prepare the data matrices for THOR input
  max_N = which.max(n_vars);
  Ref = data.frame(dset[,max_N]);	
  colnames(Ref) = "Ref";
  m_data = dset[-max_N];
  
  for (i in 1:(N_samples-1)){
    m = as.data.frame(cbind(Ref=Ref,y= m_data[,i]));
    rownames(m) = rownames(dset);
    M[[i]] = prep.M(m);
    rM[[i]] = rotate.M(M[[i]]);
  }
  
  ## Return list of data plus Matrices = THOR data object
  RVAL= (list(data=dset,M = M,r.M=rM));
  class(RVAL) = "THOR.data";
  return(RVAL);
  
}
scottwalmsley/THOR documentation built on May 11, 2018, 12:04 a.m.