Description Usage Arguments Value See Also Examples
summarise_all()
and mutate_all()
apply the functions
to all (non-grouping) columns. summarise_at()
and
mutate_at()
allow you to select columns
using the same name-based select_helpers
as with
select()
. summarise_if
() and
mutate_if
() operate on columns for which a predicate returns
TRUE
. Finally, summarise_each()
and
mutate_each()
are older variants that will be
deprecated in the future.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | summarise_all(.tbl, .funs, ...)
mutate_all(.tbl, .funs, ...)
summarise_if(.tbl, .predicate, .funs, ...)
mutate_if(.tbl, .predicate, .funs, ...)
summarise_at(.tbl, .cols, .funs, ...)
mutate_at(.tbl, .cols, .funs, ...)
summarize_all(.tbl, .funs, ...)
summarize_at(.tbl, .cols, .funs, ...)
summarize_if(.tbl, .predicate, .funs, ...)
|
.tbl |
a tbl |
.funs |
List of function calls generated by
|
... |
Additional arguments for the function calls. These are evaluated only once. |
.predicate |
A predicate function to be applied to the columns
or a logical vector. The columns for which |
.cols |
A list of columns generated by |
A data frame. By default, the newly created columns have the shortest names needed to distinguish the output. To force inclusion of a name, even when not needed, name the input (see examples for details).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | by_species <- iris %>% group_by(Species)
# One function
by_species %>% summarise_all(n_distinct)
by_species %>% summarise_all(mean)
# Use the _at and _if variants for conditional mapping.
by_species %>% summarise_if(is.numeric, mean)
# summarise_at() can use select() helpers with the vars() function:
by_species %>% summarise_at(vars(Petal.Width), mean)
by_species %>% summarise_at(vars(matches("Width")), mean)
# You can also specify columns with column names or column positions:
by_species %>% summarise_at(c("Sepal.Width", "Petal.Width"), mean)
by_species %>% summarise_at(c(1, 3), mean)
# You can provide additional arguments. Those are evaluated only once:
by_species %>% summarise_all(mean, trim = 1)
by_species %>% summarise_at(vars(Petal.Width), mean, trim = 1)
# You can provide an expression or multiple functions with the funs() helper.
by_species %>% mutate_all(funs(. * 0.4))
by_species %>% summarise_all(funs(min, max))
# Note that output variable name must now include function name, in order to
# keep things distinct.
# Function names will be included if .funs has names or whenever multiple
# functions are used.
by_species %>% mutate_all(funs("in" = . / 2.54))
by_species %>% mutate_all(funs(rg = diff(range(.))))
by_species %>% summarise_all(funs(med = median))
by_species %>% summarise_all(funs(Q3 = quantile), probs = 0.75)
by_species %>% summarise_all(c("min", "max"))
# Two functions, continued
by_species %>% summarise_at(vars(Petal.Width, Sepal.Width), funs(min, max))
by_species %>% summarise_at(vars(matches("Width")), funs(min, max))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.