R/forward.sel.par.R

Defines functions forward.sel.par

Documented in forward.sel.par

#' Parametric forward selection of explanatory variables in regression and RDA
#' 
#' If Y is univariate, this function implements FS in regression. If Y is 
#' multivariate, this function implements FS using the F-test described by 
#' Miller and Farr (1971). This test requires that (i) the Y variables be 
#' standardized, and (ii) the error in the response variables be normally 
#' distributed (to be verified by the user).
#' 
#' The forward selection will stop when either K, R2tresh, adjR2tresh, alpha and
#' R2more has its parameter reached.
#' 
#' @aliases forward.sel.par
#'   
#' @param Y Response data matrix with n rows and m columns containing 
#'   quantitative variables
#' @param X Explanatory data matrix with n rows and p columns containing 
#'   quantitative variables
#' @param K Maximum number of variables to be selected. The default is one minus
#'   the number of rows
#' @param R2thresh Stop the forward selection procedure if the R-square of the 
#'   model exceeds the stated value. This parameter can vary from 0.001 to 1
#' @param adjR2thresh Stop the forward selection procedure if the adjusted 
#'   R-square of the model exceeds the stated value. This parameter can take any
#'   value (positive or negative) smaller than 1
#' @param R2more Stop the forward selection procedure if the difference in model
#'   R-square with the previous step is lower than R2more. The default setting 
#'   is 0.001
#' @param alpha Significance level. Stop the forward selection procedure if the 
#'   p-value of a variable is higher than alpha. The default is 0.05
#' @param Yscale Standardize the variables in table Y to variance 1. The default
#'   setting is FALSE. The setting is automatically changed to TRUE if Y 
#'   contains more than one variable. This is a validity condition for the 
#'   parametric test of significance (Miller and Farr 1971)
#' @param verbose If 'TRUE' more diagnostics are printed. The default setting is
#'   TRUE
#' @return A dataframe with: \item{ variables }{ The names of the variables } 
#'   \item{ order }{ The order of the selection of the variables } \item{ R2 }{ 
#'   The R2 of the variable selected } \item{ R2Cum }{ The cumulative R2 of the 
#'   variables selected } \item{ AdjR2Cum }{ The cumulative adjusted R2 of the 
#'   variables selected } \item{ F }{ The F statistic } \item{ pval }{ The 
#'   P-value statistic }
#' @author Pierre Legendre \email{pierre.legendre@@umontreal.ca} and Guillaume 
#'   Blanchet
#' @references Miller, J. K. & S. D. Farr. 1971. Bimultivariate redundancy: a
#'   comprehensive measure of interbattery relationship. \emph{Multivariate
#'   Behavioral Research}, \bold{6}, 313--324.\cr
#'   
#' @keywords multivariate
#' @examples
#' 
#' x <- matrix(rnorm(30),10,3)
#' y <- matrix(rnorm(50),10,5)
#'     
#' forward.sel.par(y,x, alpha = 0.5)
#'  
#' @importFrom stats pf
#' @export forward.sel.par

forward.sel.par <- function(Y, X, alpha = 0.05, K = nrow(X)-1, R2thresh = 0.99, R2more = 0.001, adjR2thresh = 0.99, Yscale = FALSE, verbose=TRUE)
{
    FPval <- function(R2cum,R2prev,n,mm,p)
        ## Compute the partial F and p-value after adding a single explanatory
        ## variable to the model. In FS, the number of df of the numerator of F
        ## is always 1. See Sokal & Rohlf 1995, eq 16.14.
        ## 
        ## The amendment, based on Miller and Farr (1971), consists in
        ## multiplying the numerator and denominator df by 'p', the number of
        ## variables in Y, when computing the p-value.
        ## 
        ## Pierre Legendre, May 2007
    {
        df2 <- (n - 1 - mm)
        Fstat <- ((R2cum - R2prev)*df2) / (1 - R2cum)
        pval <- pf(Fstat, 1*p, df2*p, lower.tail = FALSE)
        return(list(Fstat = Fstat, pval = pval))
    }
    
    ## The following functions have been included in vegan
    ## there are local copies to avoid dependencies
    
    .RsquareAdj <- function (x, n, m) 
    {
        r2 <- 1 - (1 - x) * (n - 1)/(n - m - 1)
        if (any(na <- m >= n - 1)) 
            r2[na] <- NA
        r2
    }
    
    
    .simpleRDA <- function (Y, X, SS.Y)
    {
        Q <- qr(X, tol=1e-6)
        Yfit.X <- qr.fitted(Q, Y)
        SS <- sum(Yfit.X^2)
        if (missing(SS.Y)) SS.Y <- sum(Y^2)
        Rsquare <- SS/SS.Y
        list(Rsquare = Rsquare, m = Q$rank)
    }
      
    Y <- as.matrix(Y)
    X <- apply(as.matrix(X), 2, scale, center = TRUE, scale = TRUE)
    var.names <- colnames(as.data.frame(X))
    n <- nrow(X)
    m <- ncol(X)
    if(nrow(Y) != n) stop("Numbers of rows not the same in Y and X")
    p <- ncol(Y)
    if(p > 1) {
        Yscale = TRUE
        if(verbose) cat("The variables in response matrix Y have been standardized",'\n')
    }
    Y <- apply(Y, 2, scale, center = TRUE, scale = Yscale)
    SS.Y <- sum(Y^2)
    
    X.out <- c(1:m)
    
    ## Find the first variable X to include in the model
    R2prev <- 0
    R2cum <- 0
    for(j in 1:m) {
        toto <- .simpleRDA(Y, X[,j], SS.Y)
        if(toto$Rsquare > R2cum) {
            R2cum <- toto$Rsquare
            no.sup <- j
        }
    }
    mm <- 1
    FP <- FPval(R2cum, R2prev, n, mm, p)
    if(FP$pval <= alpha) {
        adjRsq <- .RsquareAdj(R2cum, n, mm)
        res1 <- var.names[no.sup]
        res2 <- no.sup
        res3 <- R2cum
        res4 <- R2cum
        res5 <- adjRsq
        res6 <- FP$Fstat
        res7 <- FP$pval
        X.out[no.sup] <- 0
        delta <- R2cum
    } else {
        stop("Procedure stopped (alpha criterion): pvalue for variable ",no.sup," is ",FP$pval)
    }
    
    ## Add variables X to the model
    while((FP$pval <= alpha) & (mm <= K) & (R2cum <= R2thresh) & (delta >= R2more) & (adjRsq <= adjR2thresh)) {
        mm <- mm+1
        R2prev <- R2cum
        R2cum <- 0
        for(j in 1:m) {
            if(X.out[j] != 0) {
                toto <- .simpleRDA(Y, X[,c(res2,j)], SS.Y)
                if(toto$Rsquare > R2cum) {
                    R2cum <- toto$Rsquare
                    no.sup <- j
                }
            }
        }
        FP <- FPval(R2cum, R2prev, n, mm, p)
        delta <- R2cum - R2prev
        adjRsq <- .RsquareAdj(R2cum, n, mm)
        res1 <- c(res1, var.names[no.sup])
        res2 <- c(res2, no.sup)
        res3 <- c(res3, delta)
        res4 <- c(res4, R2cum)
        res5 <- c(res5, adjRsq)
        res6 <- c(res6, FP$Fstat)
        res7 <- c(res7, FP$pval)
        X.out[no.sup] <- 0
    }
    if(verbose) {
        if(FP$pval > alpha)  cat("Procedure stopped (alpha criterion): pvalue for variable ",no.sup," is ",FP$pval,'\n') 
        if(mm > K)           cat("Procedure stopped (K criterion): mm = ",mm," is larger than ",K," after including variable ",no.sup,'\n') 
        if(R2cum > R2thresh) cat("Procedure stopped (R2thresh criterion): R2cum for variable ",no.sup," is ",R2cum,'\n') 
        if(delta < R2more)   cat("Procedure stopped (R2more criterion): delta for variable ",no.sup," is ",delta,'\n') 
        if(adjRsq > adjR2thresh) cat("Procedure stopped (adjR2thresh criterion): adjRsq for variable ",no.sup," is ",adjRsq,'\n') 
    }
    
    res <- data.frame(res1,res2,res3,res4,res5,res6,res7)
    colnames(res) <- c("variable","order","R2","R2cum","AdjR2Cum","F","pval")
    if((FP$pval > alpha) | (mm > K) | (R2cum > R2thresh) | (delta < R2more) | (adjRsq > adjR2thresh))  res <- res[1:(mm-1),]
    
    return(res)
}
sdray/adespatial documentation built on Sept. 12, 2024, 4:36 p.m.