#' HGZIPS - HZINB (assuming independence)
#'
#' This \code{HZINB_independence} function finds hyperparameter estimates by implementing the Expectation-Maximization (EM) algorithm and hierarchical zero-inflated negative binomial model with one gamma component.
#'
#' @name HZINB_independence
#' @import pscl
#' @import stats
#' @import emdbook
#'
#' @param grid_a alpha value grid
#' @param grid_b beta value grid
#' @param grid_omega omega value grid
#' @param init_pi_k initial probability of each alpha value for implementing the EM algorithm
#' @param init_pi_l inital probability of each beta value for implementing the EM algorithm
#' @param init_pi_h initial probability of each omega value for implementing the EM algprithm
#' @param dataset a list of squashed datasets that include N_ij, E_ij and weights for each drug (j). This dataset list can be generated by the rawProcessing function in this package.
#' @param iteration number of EM algorithm iterations to run
#' @param Loglik whether to return the loglikelihood of each iteration or not (TRUE or FALSE)
#' @param zeroes A logical scalar specifying if zero counts should be included.
#' @param N_star the minimum Nij count size to be used for hyperparameter estimation. If zeroes are included in Nij vector, please set N_star = NULL
#'
# +-x +-x +-x +-x +-x +-x +-x +-x
# assuming independence
# +-x +-x +-x +-x +-x +-x +-x +-x
#' HZINB_independence
#' @return \code{HZINB_independence} a list of estimated probability of each alpha, beta, omega combination and their corresponding loglikelihood (optional)
#' \itemize{
#' \item \code{theta_EM} Estimate of hyperparameters for each EM iteration
#' \item \code{llh} logliklihood for each EM iteration (optional)
#' }
#' @export
HZINB_independence = function(grid_a, grid_b, grid_omega, init_pi_k, init_pi_l, init_pi_h, dataset, iteration, Loglik = FALSE, zeroes = FALSE, N_star = 1){
## EM algorithm
for (k in 1:length(dataset)){
if (!is.null(N_star)){
dataset[[k]] = subset(dataset[[k]], N >= N_star)
}
}
if (zeroes == FALSE){
K = length(grid_a)
L = length(grid_b)
#grid_omega = grid_omega
# if (!require('countreg')) install.packages('countreg'); library('countreg')
all_combinations = as.data.frame(matrix(NA, K*L, 2))
colnames(all_combinations) = c("a_j", "b_j")
all_combinations$a_j = rep(grid_a, 10)
for (i in c(1:L)){
all_combinations$b_j[((i - 1)*10 + 1):(i*10)] = rep(grid_b[i], 10)
}
## EM algorithm
# initialization
N.EM <- iteration # number of E-M iterations
#iteration_50 = pi_klh[50,]
pi_klh_K = matrix(NA, N.EM + 2, K)
pi_klh_L = matrix(NA, N.EM + 2, L)
pi_klh_K[1,] = init_pi_k
pi_klh_L[1,] = init_pi_l
pi_klh_all_combinations = as.data.frame(matrix(NA, K*L, 2))
colnames(pi_klh_all_combinations) = c("K", "L")
denominator = rep(NA, length(dataset))
numerator = rep(NA, length(dataset))
#ratio = rep(NA, ncol(N_ij))
joint_probs = as.data.frame(matrix(NA, nrow(all_combinations), length(dataset)))
for (j in 1:length(dataset)){
for (m in 1:nrow(all_combinations)){
joint_probs[m,j] = sum(dataset[[j]]$weight * (dnbinom(dataset[[j]]$N, size = all_combinations$a_j[m], prob = all_combinations$b_j[m]/(dataset[[j]]$E + all_combinations$b_j[m]), log = TRUE) - log1p(-pnbinom(N_star - 1, size = all_combinations$a_j[m], prob = all_combinations$b_j[m]/(dataset[[j]]$E + all_combinations$b_j[m]), log = TRUE))))
}
}
LSE_R <- function(vec){
n.vec <- length(vec)
vec <- sort(vec, decreasing = TRUE)
Lk <- vec[1]
for (k in 1:(n.vec-1)) {
Lk <- max(vec[k+1], Lk) + log1p(exp(-abs(vec[k+1] - Lk)))
}
return(Lk)
}
ratio = as.data.frame(matrix(NA, K*L, length(dataset)))
for (i in 1:(N.EM + 1)) {
pi_klh_all_combinations$K = rep(pi_klh_K[i,], 10)
for (ii in c(1:L)){
pi_klh_all_combinations$L[((ii - 1)*10 + 1):(ii*10)] = rep(pi_klh_L[i,][ii], 10)
}
pi_klh_all_combinations$prod = pi_klh_all_combinations$K * pi_klh_all_combinations$L
for (m in 1:nrow(all_combinations)){
for (j in 1:length(dataset)){
denominator[j] = LSE_R(log(pi_klh_all_combinations$prod) + joint_probs[,j])
numerator[j] = log(pi_klh_K[i, which(grid_a == all_combinations$a_j[m])]*pi_klh_L[i, which(grid_b == all_combinations$b_j[m])]) + joint_probs[m, j]
ratio[m,j] = numerator[j] - denominator[j]
}
}
# if (Loglik == TRUE){
# RATIO[[i]] = ratio
# } else {
# RATIO = NULL
# }
all = cbind(all_combinations, ratio)
for (iv in 1:nrow(ratio)){
all$Sum[iv] = LSE_R(ratio[iv,])
}
all$Sum = unlist(all$Sum)
temp = subset(all, !is.na(Sum))
overallSum = LSE_R(temp$Sum)
sum_a_j = aggregate(temp$Sum, by = list(Category = temp$a_j), FUN=LSE_R)
sum_b_j = aggregate(temp$Sum, by = list(Category = temp$b_j), FUN=LSE_R)
a_id = NULL
b_id = NULL
omega_id = NULL
for (kk in 1:length(grid_a)){
a_id = append(a_id, ifelse(sum(grid_a[kk] == sum_a_j$Category) == 0, kk, next))
}
for (kk in 1:length(grid_b)){
b_id = append(b_id, ifelse(sum(grid_b[kk] == sum_b_j$Category) == 0, kk, next))
}
if (length(a_id) == 0){
pi_klh_K[i + 1, ] = exp(sum_a_j$x - overallSum)
} else {
pi_klh_K[i + 1, ][-a_id] = exp(sum_a_j$x - overallSum)
pi_klh_K[i + 1, ][a_id] = 0
}
if (length(b_id) == 0){
pi_klh_L[i + 1, ] = exp(sum_b_j$x - overallSum)
} else {
pi_klh_L[i + 1, ][-b_id] = exp(sum_b_j$x - overallSum)
pi_klh_L[i + 1, ][b_id] = 0
}
}
result = list("pi_K" = pi_klh_K[-(N.EM + 2), ], "pi_L" = pi_klh_L[-(N.EM + 2), ])
} else {
K = length(grid_a)
L = length(grid_b)
H = length(grid_omega)
#install.packages("countreg", repos="http://R-Forge.R-project.org")
#library(countreg)
all_combinations = as.data.frame(matrix(NA, K*L*H, 3))
colnames(all_combinations) = c("a_j", "b_j", "omega_j")
all_combinations$a_j = rep(grid_a, 100)
for (i in c(1:L)){
all_combinations$b_j[((i - 1)*100 + 1):(i*100)] = rep(grid_b[i], 100)
}
for (i in c(1:H)){
row_num = c(((i - 1)*10 + 1):(i*10))
all_combinations$omega_j[row_num] = rep(grid_omega[i], 10)
}
all_combinations$omega_j = rep(all_combinations$omega_j[1:100], 10)
# initialization
N.EM <- iteration # number of E-M iterations
pi_klh_K = matrix(NA, N.EM + 2, K)
pi_klh_L = matrix(NA, N.EM + 2, L)
pi_klh_H = matrix(NA, N.EM + 2, H)
pi_klh_K[1,] = init_pi_k
pi_klh_L[1,] = init_pi_l
pi_klh_H[1,] = init_pi_h
pi_klh_all_combinations = as.data.frame(matrix(NA, K*L*H, 3))
colnames(pi_klh_all_combinations) = c("K", "L", "H")
denominator = rep(NA, length(dataset))
numerator = rep(NA, length(dataset))
ratio = as.data.frame(matrix(NA, K*H*L, length(dataset)))
#llh_col = rep(NA, ncol(N_ij))
#RATIO = list()
joint_probs = as.data.frame(matrix(NA, nrow(all_combinations), length(dataset)))
for (j in 1:length(dataset)){
for (m in 1:nrow(all_combinations)){
joint_probs[m,j] = sum(dataset[[j]]$weight * emdbook::dzinbinom(dataset[[j]]$N, mu = (dataset[[j]]$E/all_combinations$b_j[m])*all_combinations$a_j[m], size = all_combinations$a_j[m], zprob = all_combinations$omega_j[m], log = TRUE))
}
}
llh_j = rep(NA, length(dataset))
llh = rep(NA, N.EM + 1)
for (i in 1:(N.EM + 1)) {
pi_klh_all_combinations$K = rep(pi_klh_K[i,], 100)
for (ii in c(1:L)){
pi_klh_all_combinations$L[((ii - 1)*100 + 1):(ii*100)] = rep(pi_klh_L[i,][ii], 100)
}
for (iii in c(1:H)){
row_num = c(((iii - 1)*10 + 1):(iii*10))
pi_klh_all_combinations$H[row_num] = rep(pi_klh_H[i,][iii], 10)
}
pi_klh_all_combinations$H = rep(pi_klh_all_combinations$H[1:100], 10)
pi_klh_all_combinations$prod = pi_klh_all_combinations$K * pi_klh_all_combinations$L * pi_klh_all_combinations$H
for (m in 1:nrow(all_combinations)){
for (j in 1:length(dataset)){
denominator[j] = LSE_R(log(pi_klh_all_combinations$prod) + joint_probs[,j])
numerator[j] = log(pi_klh_K[i, which(grid_a == all_combinations$a_j[m])]*pi_klh_L[i, which(grid_b == all_combinations$b_j[m])]*pi_klh_H[i, which(grid_omega == all_combinations$omega_j[m])]) + joint_probs[m, j]
ratio[m,j] = numerator[j] - denominator[j]
}
}
# if (Loglik == TRUE){
# RATIO[[i]] = ratio
# } else {
# RATIO = NULL
# }
all = cbind(all_combinations, ratio)
for (iv in 1:nrow(ratio)){
all$Sum[iv] = LSE_R(ratio[iv,])
}
all$Sum = unlist(all$Sum)
temp = subset(all, !is.na(Sum))
overallSum = LSE_R(temp$Sum)
sum_a_j = aggregate(temp$Sum, by = list(Category = temp$a_j), FUN=LSE_R)
sum_b_j = aggregate(temp$Sum, by = list(Category = temp$b_j), FUN=LSE_R)
sum_omega_j = aggregate(temp$Sum, by = list(Category = temp$omega_j), FUN=LSE_R)
a_id = NULL
b_id = NULL
omega_id = NULL
for (kk in 1:length(grid_a)){
a_id = append(a_id, ifelse(sum(grid_a[kk] == sum_a_j$Category) == 0, kk, next))
}
for (kk in 1:length(grid_b)){
b_id = append(b_id, ifelse(sum(grid_b[kk] == sum_b_j$Category) == 0, kk, next))
}
for (kk in 1:length(grid_omega)){
omega_id = append(omega_id, ifelse(sum(grid_omega[kk] == sum_omega_j$Category) == 0, kk, next))
}
if (length(a_id) == 0){
pi_klh_K[i + 1, ] = exp(sum_a_j$x - overallSum)
} else {
pi_klh_K[i + 1, ][-a_id] = exp(sum_a_j$x - overallSum)
pi_klh_K[i + 1, ][a_id] = 0
}
if (length(b_id) == 0){
pi_klh_L[i + 1, ] = exp(sum_b_j$x - overallSum)
} else {
pi_klh_L[i + 1, ][-b_id] = exp(sum_b_j$x - overallSum)
pi_klh_L[i + 1, ][b_id] = 0
}
if (length(omega_id) == 0){
pi_klh_H[i + 1, ] = exp(sum_omega_j$x - overallSum)
} else {
pi_klh_H[i + 1, ][-omega_id] = exp(sum_omega_j$x - overallSum)
pi_klh_H[i + 1, ][omega_id] = 0
}
if (Loglik == TRUE){
for (j in 1:length(dataset)){
pi_klh_all_combinations$logSum = log(pi_klh_all_combinations$K) + log(unlist(pi_klh_all_combinations$L)) + log(unlist(pi_klh_all_combinations$H)) + joint_probs[,j]
llh_j[j] = LSE_R(pi_klh_all_combinations$logSum)
}
llh[i] = sum(llh_j)
print(i)
} else {
llh = NULL
}
}
result = list("pi_K" = pi_klh_K[-(N.EM + 2), ], "pi_L" = pi_klh_L[-(N.EM + 2), ], "pi_H" = pi_klh_H[-(N.EM + 2), ], "Loglik" = llh)
}
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.