Description Usage Arguments Details Value Examples
Uses a hidden Markov model to calculate the probabilities of the true underlying genotypes given the observed multipoint marker data, with possible allowance for genotyping errors.
1 2 3  | calc_genoprob(cross, step = 0, off_end = 0, stepwidth = c("fixed", "max"),
  pseudomarker_map, error_prob = 0.0001, map_function = c("haldane",
  "kosambi", "c-f", "morgan"), quiet = TRUE, n_cores = 1)
 | 
cross | 
 Object of class   | 
step | 
 Distance between pseudomarkers and markers; if
  | 
off_end | 
 Distance beyond terminal markers in which to insert pseudomarkers.  | 
stepwidth | 
 Indicates whether to use a fixed grid
(  | 
pseudomarker_map | 
 A map of pseudomarker locations; if provided the
  | 
error_prob | 
 Assumed genotyping error probability  | 
map_function | 
 Character string indicating the map function to use to convert genetic distances to recombination fractions.  | 
quiet | 
 If   | 
n_cores | 
 Number of CPU cores to use, for parallel calculations.
(If   | 
Let O[k] denote the observed marker genotype at position k, and g[k] denote the corresponding true underlying genotype.
We use the forward-backward equations to calculate a[k][v] = log Pr(O[1], …, O[k], g[k] = v) and b[k][v] = log Pr(O[k+1], …, O[n] | g[k] = v)
We then obtain Pr(g[k] | O[1], …, O[n] = exp(a[k][v] + b[k][v]) / s where s = sum_v exp(a[k][v] + b[k][v])
A list of three-dimensional arrays of probabilities, individuals x positions x genotypes
1 2  | grav2 <- read_cross2(system.file("extdata", "grav2.zip", package="qtl2"))
probs <- calc_genoprob(grav2, step=1, error_prob=0.002)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.