source("../spread/R/cascades3D.R")
source("../spread/R/tools.R")
source("../spread/R/ABC_analyse.R")
args=commandArgs(trailingOnly = TRUE) #pass number of slave by comand line, should be #node - 1 as one node is used by the master
ns=args[1]#first argument is the number of slave
mainfold=args[2] #second argument = mainfolder to store the results
if(is.na(mainfold) | mainfold=="") mainfold="simulations"
print(paste0("Abc will be stored in mainfolder:",mainfold))
dir.create(mainfold)
library(Rmpi)
mpi.spawn.Rslaves(nslaves=ns)
mpi.bcast.cmd( id <- mpi.comm.rank() )
mpi.bcast.cmd( ns <- mpi.comm.size() )
mpi.bcast.cmd( host <- mpi.get.processor.name() )
mpi.bcast.cmd(source("../spread/R/cascades3D.R"))
mpi.bcast.cmd(source("../spread/R/tools.R"))
mpi.bcast.cmd(source("../spread/R/ABC_analyse.R"))
mpi.bcast.cmd(mainfold)
#(N=200,R=5,betadistrib=rep(1,200),utility=seq(0,1,length.out=5),repetition=2,tl=500,IC=50,summary=T,Nmax=NULL,lambda_c=0,lambda_r=0,dtime=0)
### Define Prior Ranges ###
prior_Nmin=c(1000,1000000)
prior_mu=c(0,0.3)
#prior_Nmax=c(500,5000)
prior_t_step=c(10,300)
#prior_betaDistrib=c(1,5)
prior_tau=c(1,100)
#prior_beta=c(-2,2)
### Define Constants and Settings ###
nsim=7680 #number of simulations
nsubfold=50
full=F #Boolean to save or not the full simulations
load("observations.bin")
fi=0
for(ns in 1:nsubfold){
fold=file.path(mainfold,paste0(mainfold,fi))
while(file.exists(fold)){
fi=fi+1
fold=file.path(mainfold,paste0(mainfold,fi))
}
dir.create(fold)
if(full)dir.create(file.path(fold,"fullsim"))
### Create Parameter Space ###
## first ABC with conformity
#parameters=list(
# ### Define Prior Ranges ###,
# Nmin=sample(prior_Nmin[1]:prior_Nmin[2],nsim,replace=T),
# Nmax=sample(prior_Nmax[1]:prior_Nmax[2],nsim,replace=T),
# mu=runif(nsim,prior_mu[1],prior_mu[2]),
# t_step=sample(prior_t_step[1]:prior_t_step[2],nsim,replace=T),
# tau=sample(prior_tau[1]:prior_tau[2],nsim,replace=T)
# )
### Create Parameter Space ###
parameters=list(
### Define Prior Ranges ###,
Nmin=sample(prior_Nmin[1]:prior_Nmin[2],nsim,replace=T),
mu=runif(nsim,prior_mu[1],prior_mu[2]),
t_step=sample(prior_t_step[1]:prior_t_step[2],nsim,replace=T),
tau=sample(prior_tau[1]:prior_tau[2],nsim,replace=T)
#beta=runif(nsim,prior_beta[1],prior_beta[2])
)
scores=mpi.parLapply(1:nsim,function(i,parameters,obs,fold,full){
print(sapply(parameters,function(p)p[i]))
start.time <- Sys.time()
rumsize=randomCascades(
Nmin=parameters$Nmin[i],
mu=parameters$mu[i],
conformity=F,
t_step=parameters$t_step[i],
tau=parameters$tau[i],
beta=0
)$size
end.time <- Sys.time()
time.taken <- end.time - start.time
print(time.taken)
if(full){
rud=list(scores=sc,rd=rumsize,t=time.taken)
save(rud,file=file.path(fold,"fullsim",paste0("res_sim_",i,".bin")))
}
qc=c()
print("calculate qc")
qc$size=quantilediff(rumsize , obs$allrsize)
qc$true=quantilediff(rumsize , obs$trueru$size)
qc$false=quantilediff(rumsize , obs$falseru$size)
print("done")
#qc$breadth=quantilediff(rud$breadth , obs$allbreadth)
#qc$depth=quantilediff(rud$depth , obs$alldepth+1)
kokc=c()
#kokc$size=kokldiff(rumsize , obs$allrsize)
#kokc$breadth=kokldiff(rud$breadth , obs$allbreadth)
#kokc$depth=kokldiff(rud$depth , obs$alldepth+1)
kokcrev=c()
#kokcrev$size=kokldiff(rumsize , obs$allrsize)
#kokcrev$breadth=kokldiff(obs$allbreadth , rud$breadth )
#kokcrev$depth=kokldiff(obs$alldepth+1,rud$depth)
kc=c()
#kc$breadth=kldiff(rud$breadth , obs$allbreadth)
#kc$depth=kldiff(rud$depth , obs$alldepth+1)
kcrev=c()
#kcrev$size=kldiff(rumsize , obs$allrsize)
#kcrev$breadth=kldiff(obs$allbreadth , rud$breadth )
#kcrev$depth=kldiff(obs$alldepth+1,rud$depth)
print(list(kc=kc,qc=qc,kokc=kokc,kcrev=kcrev,kokcrev=kokcrev))
return(list(kc=kc,qc=qc,kokc=kokc,kcrev=kcrev,kokcrev=kokcrev))
},obs=observation,parameters=parameters,fold=fold,full=full)
save(parameters,file=file.path(fold,"parameters.bin"))
save(scores,file=file.path(fold,"scores.bin"))
}
mpi.close.Rslaves(dellog = T)
mpi.quit()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.