# Copyright (C) 2013 Lars Simon Zehnder
#
# This file is part of finmix.
#
# finmix is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# finmix is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with finmix. If not, see <http://www.gnu.org/licenses/>.
#' Finmix `groupmoments` class
#'
#' Stores moments for finite mixture component distributions. These are only
#' available, if the data contains in addition to observations also indicators
#' defining to which component a certain observation belongs. These indicators
#' are stored in an [fdata-class] object in the slot `S`.
#'
#' @slot NK An array containing the group sizes for each component.
#' @slot mean A matrix containing the group averages for each component.
#' @slot WK An array containing the within-group variability. For multivariate
#' data this is an array of dimension `K x r x r` and for univariate
#' data this is simply an array of dimension `1 x K`.
#' @slot var An array containing the within-group (co)variance. For multivariate
#' data this is an array of dimension `K x r x r` and for univariate
#' data this is simply an array of dimension `1 x K`.
#' @slot fdata An [fdata-class] object containing the data.
#' @exportClass groupmoments
#' @rdname groupmoments-class
#' @keywords internal
#' @seealso
#' * [groupmoments()] for the class constructor
#' * [datamoments-class] for the base class for data moments
#' * [datamoments()] for the constructor of any object of the `datamoments`
#' class family
.groupmoments <- setClass("groupmoments",
representation(
NK = "array",
mean = "matrix",
WK = "array",
var = "array",
fdata = "fdata"
),
validity = function(object) {
## else: ok
TRUE
},
prototype(
NK = array(),
mean = matrix(),
WK = array(),
var = array(),
fdata = fdata()
)
)
#' Finmix `groupmoments` class constructor
#'
#' @description
#' Calling [groupmoments()] creates an object holding various
#' component-specific moments. These moments can only constructed if the
#' [fdata-class] object contains in addition to observations also
#' indicators defining from which component a certain observation stems.
#'
#' @param value An `fdata` object containing observations in slot `y` and
#' indicators in slot `S`.
#' @return A `groupmoments` object containing component-specific moments of the
#' `fdata` object.
#' @export
#' @name groupmoments
#'
#' @examples
#' # Define a mixture model with exponential components.
#' f_model <- model("exponential", par = list(lambda = c(0.3, 0.7)), K = 2)
#' # Simulate data from the mixture model.
#' f_data <- simulate(f_model)
#' # Create group moments of the data.
#' groupmoments(f_data)
#'
#' @seealso
#' * [fdata-class] for the `fdata` class definition
#' * [groupmoments-class] for the definition of the `groupmoments`
#' class
#' * [datamoments-class] for the base class for data moments
#' * [datamoments()] for the constructor of any object of the `datamoments`
#' class family
"groupmoments" <- function(value = fdata()) {
hasY(value, verbose = TRUE)
hasS(value, verbose = TRUE)
.groupmoments(value = value)
}
## initializes by immediately calling method ##
## 'generateMoments' ##
#' Initializer of the `groupmoments` class
#'
#' @description
#' Only used implicitly. The initializer calls a function `generateMoments()`
#' object. to generate in the initialization step the moments for a passed-in
#' `fdata` object.
#'
#' @param .Object An object: see the "initialize Methods" section in
#' [initialize].
#' @param ... Arguments to specify properties of the new object, to be passed
#' to `initialize()`.
#' @param model A finmix [fdata-class] object containing the observations.
#' @keywords internal
#'
#' @seealso
#' * [Classes_Details] for details of class definitions, and
#' * [setOldClass] for the relation to S3 classes
setMethod(
"initialize", "groupmoments",
function(.Object, ..., value) {
.Object@fdata <- value
generateMoments(.Object)
}
)
#' Generate moments
#'
#' @description
#' Implicit method. Calling [generateMoments()] generates the moments of a
#' finite mixture with continuous data.
#'
#' @param object A `groupmoments` object.
#' @return An `groupmoments` object with calculated moments.
#' @keywords internal
setMethod(
"generateMoments", "groupmoments",
function(object) {
.generateGroupMoments(object)
}
)
## R usual 'show' function ##
#' Shows a summary of a `groupmoments` object.
#'
#' Calling [show()] on a `groupmoments` object gives an overview
#' of the moments of a finit mixture with continuous data.
#'
#' @param object A `groupmoments` object.
#' @returns A console output listing the slots and summary information about
#' each of them.
#' @exportMethod show
#' @keywords internal
setMethod(
"show", "groupmoments",
function(object) {
cat("Object 'groupmoments'\n")
cat(
" NK : Vector of",
length(object@NK), "\n"
)
cat(
" mean :",
paste(dim(object@mean), collapse = "x"), "\n"
)
cat(
" WK :",
paste(dim(object@WK), collapse = "x"), "\n"
)
cat(
" var :",
paste(dim(object@var), collapse = "x"), "\n"
)
cat(
" fdata : Object of class",
class(object@fdata), "\n"
)
}
)
## R usual Getters ##
#' Getter method of `groupmoments` class.
#'
#' Returns the `NK` slot.
#'
#' @param object An `groupmoments` object.
#' @returns The `NK` slot of the `object`.
#' @exportMethod getNK
#' @keywords internal
#'
#' @examples
#' # Generate a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 0.7)), K = 2)
#' # Simulate data from the model.
#' f_data <- simulate(f_model)
#' # Calculate the mixture moments.
#' f_gmoments <- groupmoments(f_data)
#' # Get the moments for the included indicators of the data.
#' getNK(f_gmoments)
#'
#' @seealso
#' * [groupmoments-class] for the definition of the `groupmoments`
#' class
#' * [groupmoments()] for the class constructor
setMethod(
"getNK", "groupmoments",
function(object) {
return(object@NK)
}
)
#' Getter method of `groupmoments` class.
#'
#' Returns the `mean` slot.
#'
#' @param object An `groupmoments` object.
#' @returns The `mean` slot of the `object`.
#' @exportMethod getMean
#' @keywords internal
#'
#' @examples
#' # Generate a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 0.7)), K = 2)
#' # Simulate data from the model.
#' f_data <- simulate(f_model)
#' # Calculate the mixture moments.
#' f_gmoments <- groupmoments(f_data)
#' # Get the moments for the included indicators of the data.
#' getMean(f_gmoments)
#'
#' @seealso
#' * [groupmoments-class] for the definition of the `groupmoments`
#' class
#' * [groupmoments()] for the class constructor
setMethod(
"getMean", "groupmoments",
function(object) {
return(object@mean)
}
)
#' Getter method of `groupmoments` class.
#'
#' Returns the `WK` slot.
#'
#' @param object An `groupmoments` object.
#' @returns The `WK` slot of the `object`.
#' @exportMethod getWK
#' @keywords internal
#'
#' @examples
#' # Generate a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 0.7)), K = 2)
#' # Simulate data from the model.
#' f_data <- simulate(f_model)
#' # Calculate the mixture moments.
#' f_gmoments <- groupmoments(f_data)
#' # Get the moments for the included indicators of the data.
#' getWK(f_gmoments)
#'
#' @seealso
#' * [groupmoments-class] for the definition of the `groupmoments`
#' class
#' * [groupmoments()] for the class constructor
setMethod(
"getWK", "groupmoments",
function(object) {
return(object@WK)
}
)
#' Getter method of `groupmoments` class.
#'
#' Returns the `Var` slot.
#'
#' @param object An `groupmoments` object.
#' @returns The `Var` slot of the `object`.
#' @exportMethod getVar
#' @keywords internal
#'
#' @examples
#' # Generate a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 0.7)), K = 2)
#' # Simulate data from the model.
#' f_data <- simulate(f_model)
#' # Calculate the mixture moments.
#' f_gmoments <- groupmoments(f_data)
#' # Get the moments for the included indicators of the data.
#' getVar(f_gmoments)
#'
#' @seealso
#' * [groupmoments-class] for the definition of the `groupmoments`
#' class
#' * [groupmoments()] for the class constructor
setMethod(
"getVar", "groupmoments",
function(object) {
return(object@var)
}
)
#' Getter method of `groupmoments` class.
#'
#' Returns the `fdata` slot.
#'
#' @param object An `groupmoments` object.
#' @returns The `fdata` slot of the `object`.
#' @exportMethod getFdata
#' @keywords internal
#'
#' @examples
#' # Generate a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 0.7)), K = 2)
#' # Simulate data from the model.
#' f_data <- simulate(f_model)
#' # Calculate the mixture moments.
#' f_gmoments <- groupmoments(f_data)
#' # Get the data<
#' getFdata(f_gmoments)
#'
#' @seealso
#' * [groupmoments-class] for the definition of the `groupmoments`
#' class
#' * [groupmoments()] for the class constructor
setMethod(
"getFdata", "groupmoments",
function(object) {
return(object@fdata)
}
)
## No setters as user are not intended to manipulate this ##
## object ##
### Private functions
### These functions are not exported
#' Generate data moments for finite mixture data
#'
#' @description
#' Only called implicitly. generates all moments of finite mixture data in a
#' `fdata` object.
#'
#' @param object A `groupmoments` object to contain all calculated
#' moments.
#' @returns A `groupmoments` object containing all moments of the
#' finite mixture data.
#' @noRd
".generateGroupMoments" <- function(object) {
if (!hasS(object@fdata)) {
return(object)
}
## Compute group sizes ##
## enforce column-wise ordering ##
datam <- getColY(object@fdata)
classm <- getColS(object@fdata)
## Calculate group sizes and group means ##
## 'NK' is an 1 x K vector ##
## 'groupmean' is an r x K matrix ##
level.set <- as.numeric(levels(factor(classm)))
K <- length(level.set)
r <- ncol(datam)
comp <- matrix(rep(classm, K), ncol = K) == matrix(seq(1, K),
nrow = nrow(datam),
ncol = K,
byrow = TRUE
)
names <- rep("", K)
for (k in seq(1, K)) {
names[k] <- paste("k=", k, sep = "")
}
object@NK <- as.array(apply(comp, 2, sum))
dimnames(object@NK) <- list(names)
gmeans <- matrix(NA, nrow = r, ncol = K)
for (i in seq(1, r)) {
gmeans[i, ] <- (t(datam[, i]) %*% comp) / t(object@NK)
}
colnames(gmeans) <- names
rownames(gmeans) <- colnames(datam)
object@mean <- gmeans
wkm <- array(NA, dim = c(r, r, K))
varm <- array(NA, dim = c(r, r, K))
for (k in seq(1, K)) {
group.demeaned <- (datam - rep(gmeans[, k], each = nrow(datam))) * comp[, k]
wkm[, , k] <- t(group.demeaned) %*% group.demeaned
varm[, , k] <- wkm[, , k] / object@NK[k]
}
dimnames(wkm) <- list(colnames(datam), colnames(datam), names)
dimnames(varm) <- list(colnames(datam), colnames(datam), names)
object@WK <- wkm
object@var <- varm
return(object)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.