## Copyright (C) 2013 Lars Simon Zehnder
#
# This file is part of finmix.
#
# finmix is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# finmix is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with finmix. If not, see <http://www.gnu.org/licenses/>.
#' Finmix `mcmcoutputhier` class
#'
#' @description
#' This class inherits from the `mcmcoutputbase` class and stores draws from
#' MCMC sampling with unknown indicators and an hierarchical prior. It adds to
#' its parent class a slot for storing the parameters of the hierarchical prior.
#'
#' To use an hierarchical prior in MCMC sampling the `prior` object needs to
#' have set slot `@hier` to `TRUE`.
#'
#' @slot hyper A named list containing the arrays with parameters from the
#' hierarchical prior.
#' @exportClass mcmcoutputhier
#' @rdname mcmcoutputhier-class
#'
#' @seealso
#' * [mcmcoutputbase-class] for the parent class
#' * [prior-class] for the class specifying the prior distribution
#' * [prior()] for the `prior` class constructor
#' * [priordefine()] for the advanced `prior` class constructor
.mcmcoutputhier <- setClass("mcmcoutputhier",
representation(hyper = "list"),
contains = c("mcmcoutputbase"),
validity = function(object) {
## else: OK
TRUE
},
prototype(hyper = list())
)
#' Shows a summary of an `mcmcoutputhier` object.
#'
#' @description
#' Calling [show()] on an `mcmcoutputhier` object gives an overview
#' of the `mcmcoutputhier` object.
#'
#' @param object An `mcmcoutputhier` object.
#' @returns A console output listing the slots and summary information about
#' each of them.
#' @exportMethod show
#' @keywords internal
setMethod(
"show", "mcmcoutputhier",
function(object) {
cat("Object 'mcmcoutput'\n")
cat(" class :", class(object), "\n")
cat(" M :", object@M, "\n")
cat(" burnin :", object@burnin, "\n")
cat(" ranperm :", object@ranperm, "\n")
cat(
" par : List of",
length(object@par), "\n"
)
cat(
" log : List of",
length(object@log), "\n"
)
cat(
" hyper : List of",
length(object@hyper), "\n"
)
cat(
" ST :",
paste(dim(object@ST), collapse = "x"), "\n"
)
if (!all(is.na(object@S))) {
cat(
" S :",
paste(dim(object@S), collapse = "x"), "\n"
)
}
cat(
" NK :",
paste(dim(object@NK), collapse = "x"), "\n"
)
cat(
" clust :",
paste(dim(object@clust), collapse = "x"), "\n"
)
cat(
" model : Object of class",
class(object@model), "\n"
)
cat(
" prior : Object of class",
class(object@prior), "\n"
)
}
)
#' Plot traces of MCMC sampling
#'
#' @description
#' Calling [plotTraces()] plots the MCMC traces of the mixture log-likelihood
#' , the mixture log-likelihood of the prior distribution, the log-likelihood
#' of the complete data posterior, or the weights and parameters if `lik` is
#' set to `1`.s
#'
#' If `lik` is set to `0` the parameters of the components and the posterior
#' parameters are plotted together with `K-1` weights.
#'
#' @param x An `mcmcoutputhier` object containing all sampled values.
#' @param dev A logical indicating, if the plots should be shown by a graphical
#' device. If plots should be stored to a file set `dev` to `FALSE`.
#' @param lik An integer indicating, if the log-likelihood traces should be
#' plotted (default). If set to `0` the traces for the parameters
#' and weights are plotted instead.
#' @param col A logical indicating, if the plot should be colored.
#' @param ... Further arguments to be passed to the plotting function.
#' @return A plot of the traces of the MCMC samples.
#' @exportMethod plotTraces
#' @keywords internal
#'
#' @examples
#' \dontrun{
#' # Define a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2)
#' # Simulate data from the mixture model.
#' f_data <- simulate(f_model)
#' # Define the hyper-parameters for MCMC sampling.
#' f_mcmc <- mcmc(storepost = FALSE)
#' # Define the prior distribution by relying on the data.
#' f_prior <- priordefine(f_data, f_model)
#' # Start MCMC sampling.
#' f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
#' plotTraces(f_output, lik = 0)
#' }
#'
#' @seealso
#' * [mixturemcmc()] for performing MCMC sampling
#' * [plotHist()] for plotting histograms of sampled values
#' * [plotDens()] for plotting densities of sampled values
#' * [plotSampRep()] for plotting sampling representations of sampled values
#' * [plotPointProc()] for plotting point processes for sampled values
#' * [plotPostDens()] for plotting the posterior density of component parameters
setMethod(
"plotTraces", signature(
x = "mcmcoutputhier",
dev = "ANY",
lik = "ANY",
col = "ANY"
),
function(x, dev = TRUE, lik = 1, col = FALSE, ...) {
dist <- x@model@dist
if (lik %in% c(0, 1)) {
if (dist == "poisson" || dist == "cond.poisson") {
.traces.Poisson.Base.Hier(x, dev)
} else if (dist == "binomial") {
.traces.Binomial.Base(x, dev)
} else if (dist == "exponential") {
.traces.Exponential.Base(x, dev)
} else if (dist == "normal") {
.traces.Normal.Hier(x, dev)
.traces.Weights.Base(x, dev, col)
} else if (dist == "student") {
.traces.Student.Hier(x, dev)
.traces.Weights.Base(x, dev, col)
} else if (dist == "normult") {
.traces.Normult.Hier(x, dev, col)
.traces.Weights.Base(x, dev, col)
} else if (dist == "studmult") {
.traces.Studmult.Hier(x, dev, col)
.traces.Weights.Base(x, dev, col)
}
}
if (lik %in% c(1, 2)) {
## log ##
.traces.Log.Base(x, dev)
}
}
)
#' Plot histograms of the parameters and weights
#'
#' @description
#' Calling [plotHist()] plots histograms of the sampled parameters and weights
#' from MCMC sampling.More specifically, all component parameters, `K-1` of the
#' weights and the posterior parameters are considered in the histogram plots.
#'
#' @param x An `mcmcoutputhier` object containing all sampled values.
#' @param dev A logical indicating, if the plots should be shown by a graphical
#' device. If plots should be stored to a file set `dev` to `FALSE`.
#' @param ... Further arguments to be passed to the plotting function.
#' @return Histograms of the MCMC samples.
#' @exportMethod plotHist
#' @keywords internal
#'
#' @examples
#' \dontrun{
#' # Define a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2)
#' # Simulate data from the mixture model.
#' f_data <- simulate(f_model)
#' # Define the hyper-parameters for MCMC sampling.
#' f_mcmc <- mcmc(storepost = FALSE)
#' # Define the prior distribution by relying on the data.
#' f_prior <- priordefine(f_data, f_model)
#' # Start MCMC sampling.
#' f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
#' plotHist(f_output)
#' }
#'
#' @seealso
#' * [mixturemcmc()] for performing MCMC sampling
#' * [plotTraces()] for plotting the traces of sampled values
#' * [plotDens()] for plotting densities of sampled values
#' * [plotSampRep()] for plotting sampling representations of sampled values
#' * [plotPointProc()] for plotting point processes for sampled values
#' * [plotPostDens()] for plotting the posterior density of component parameters
setMethod(
"plotHist", signature(
x = "mcmcoutputhier",
dev = "ANY"
),
function(x, dev = TRUE, ...) {
dist <- x@model@dist
if (dist == "poisson") {
.hist.Poisson.Base.Hier(x, dev)
} else if (dist == "binomial") {
.hist.Binomial.Base(x, dev)
}
}
)
#' Plot densities of the parameters and weights
#'
#' @description
#' Calling [plotDens()] plots densities of the sampled parameters and weights
#' from MCMC sampling.More specifically, all component parameters, `K-1` of the
#' weights and the posterior parameters are considered in the density plots.
#'
#' @param x An `mcmcoutputhier` object containing all sampled values.
#' @param dev A logical indicating, if the plots should be shown by a graphical
#' device. If plots should be stored to a file set `dev` to `FALSE`.
#' @param ... Further arguments to be passed to the plotting function.
#' @return Densities of the MCMC samples.
#' @exportMethod plotDens
#' @keywords internal
#'
#' @examples
#' \dontrun{
#' # Define a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2,
#' indicfix = TRUE)
#' # Simulate data from the mixture model.
#' f_data <- simulate(f_model)
#' # Define the hyper-parameters for MCMC sampling.
#' f_mcmc <- mcmc(storepost = FALSE)
#' # Define the prior distribution by relying on the data.
#' f_prior <- priordefine(f_data, f_model)
#' # Start MCMC sampling.
#' f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
#' plotDens(f_output)
#' }
#'
#' @seealso
#' * [mixturemcmc()] for performing MCMC sampling
#' * [plotTraces()] for plotting the traces of sampled values
#' * [plotHist()] for plotting histograms of sampled values
#' * [plotSampRep()] for plotting sampling representations of sampled values
#' * [plotPointProc()] for plotting point processes for sampled values
#' * [plotPostDens()] for plotting the posterior density of component parameters
setMethod(
"plotDens", signature(
x = "mcmcoutputhier",
dev = "ANY"
),
function(x, dev = TRUE, ...) {
dist <- x@model@dist
if (dist == "poisson") {
.dens.Poisson.Base.Hier(x, dev)
} else if (dist == "binomial") {
.dens.Binomial.Base(x, dev)
}
}
)
#' Plot point processes of the component parameters
#'
#' @description
#' Calling [plotPointProc()] plots point processes of the sampled component
#' parameters from MCMC sampling.
#'
#' @param x An `mcmcoutputhier` object containing all sampled values.
#' @param dev A logical indicating, if the plots should be shown by a graphical
#' device. If plots should be stored to a file set `dev` to `FALSE`.
#' @param ... Further arguments to be passed to the plotting function.
#' @return Point process of the MCMC samples.
#' @exportMethod plotPointProc
#' @keywords internal
#'
#' @examples
#' \dontrun{
#' # Define a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2)
#' # Simulate data from the mixture model.
#' f_data <- simulate(f_model)
#' # Define the hyper-parameters for MCMC sampling.
#' f_mcmc <- mcmc(storepost = FALSE)
#' # Define the prior distribution by relying on the data.
#' f_prior <- priordefine(f_data, f_model)
#' # Start MCMC sampling.
#' f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
#' plotPointProc(f_output)
#' }
#'
#' @seealso
#' * [mixturemcmc()] for performing MCMC sampling
#' * [plotTraces()] for plotting the traces of sampled values
#' * [plotHist()] for plotting histograms of sampled values
#' * [plotDens()] for plotting densities of sampled values
#' * [plotSampRep()] for plotting sampling representations of sampled values
#' * [plotPostDens()] for plotting posterior densities for sampled values
setMethod(
"plotPointProc", signature(
x = "mcmcoutputhier",
dev = "ANY"
),
function(x, dev = TRUE, ...) {
## Call 'plotPointProc()' from 'mcmcoutputbase'
callNextMethod(x, dev, ...)
}
)
#' Plot sampling representations for the component parameters.
#'
#' @description
#' Calling [plotSampRep()] plots sampling representations of the sampled
#' component parameters from MCMC sampling.
#'
#' @param x An `mcmcoutputhier` object containing all sampled values.
#' @param dev A logical indicating, if the plots should be shown by a graphical
#' device. If plots should be stored to a file set `dev` to `FALSE`.
#' @param ... Further arguments to be passed to the plotting function.
#' @return Sampling representation of the MCMC samples.
#' @exportMethod plotSampRep
#' @keywords internal
#'
#' @examples
#' \dontrun{
#' # Define a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2)
#' # Simulate data from the mixture model.
#' f_data <- simulate(f_model)
#' # Define the hyper-parameters for MCMC sampling.
#' f_mcmc <- mcmc(storepost = FALSE)
#' # Define the prior distribution by relying on the data.
#' f_prior <- priordefine(f_data, f_model)
#' # Start MCMC sampling.
#' f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
#' plotSampRep(f_output)
#' }
#'
#' @seealso
#' * [mixturemcmc()] for performing MCMC sampling
#' * [plotTraces()] for plotting the traces of sampled values
#' * [plotHist()] for plotting histograms of sampled values
#' * [plotDens()] for plotting densities of sampled values
#' * [plotPointProc()] for plotting point processes of sampled values
#' * [plotPostDens()] for plotting posterior densities for sampled values
setMethod(
"plotSampRep", signature(
x = "mcmcoutputhier",
dev = "ANY"
),
function(x, dev = TRUE, ...) {
## Call 'plotSampRep()' from 'mcmcoutputbase'
callNextMethod(x, dev, ...)
}
)
#' Plot posterior densities of the component parameters
#'
#' @description
#' Calling [plotPostDens()] plots posterior densities of the sampled component
#' parameters from MCMC sampling, if the number of components is two.
#'
#' @param x An `mcmcoutputhier` object containing all sampled values.
#' @param dev A logical indicating, if the plots should be shown by a graphical
#' device. If plots should be stored to a file set `dev` to `FALSE`.
#' @param ... Further arguments to be passed to the plotting function.
#' @return Posterior densities of the MCMC samples.
#' @exportMethod plotPostDens
#' @keywords internal
#'
#' @examples
#' \dontrun{
#' # Define a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2)
#' # Simulate data from the mixture model.
#' f_data <- simulate(f_model)
#' # Define the hyper-parameters for MCMC sampling.
#' f_mcmc <- mcmc(storepost = FALSE)
#' # Define the prior distribution by relying on the data.
#' f_prior <- priordefine(f_data, f_model)
#' # Start MCMC sampling.
#' f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
#' plotPostDens(f_output)
#' }
#'
#' @seealso
#' * [mixturemcmc()] for performing MCMC sampling
#' * [plotTraces()] for plotting the traces of sampled values
#' * [plotHist()] for plotting histograms of sampled values
#' * [plotDens()] for plotting densities of sampled values
#' * [plotSampRep()] for plotting sampling representations of sampled values
#' * [plotPointProc()] for plotting point processes for sampled values
setMethod(
"plotPostDens", signature(
x = "mcmcoutputhier",
dev = "ANY"
),
function(x, dev = TRUE, ...) {
## Call 'plotPostDens()' from 'mcmcoutputbase'
callNextMethod(x, dev, ...)
}
)
#' Constructs a sub-chain of MCMC samples
#'
#' @description
#' Calling [subseq()] constructs an MCMC sub-chain from the samples in the
#' passed-in `mcmcoutput` object specfied by the index `array` in `index`. This
#' can be advantageous, if chains are non-stationary. For successful MCMC
#' sampling the chain must be converged to the target distribution, the true
#' distribution of parameters, weights and indicators.
#'
#' Note, this method calls the equivalent method of the parent class and then
#' adds to it the sub-chains for the parameters of the hierarchical prior.
#'
#' @param object An `mcmcoutput` object containing all sampled values.
#' @param index An array specifying the extraction of the sub-chain.
#' @return An `mcmcoutput` object containing the values from the sub-chain.
#' @exportMethod swapElements
#' @keywords internal
setMethod(
"subseq", signature(
object = "mcmcoutputhier",
index = "array"
),
function(object, index) {
## Call 'subseq()' method from 'mcmcoutputfixhier'
as(object, "mcmcoutputbase") <- callNextMethod(object, index)
dist <- object@model@dist
if (dist == "poisson") {
.subseq.Poisson.Hier(object, index)
} else if (dist %in% c("normal", "student")) {
.subseq.Norstud.Hier(object, index)
} else if (dist %in% c("normult", "studmult")) {
.subseq.Normultstud.Hier(object, index)
}
}
)
#' Swaps elements between components
#'
#' @description
#' Not yet implemented.
#'
#' @param object An `mcmcoutput` object containing the sampled values.
#' @param index An array specifying the extraction of the values.
#' @return An `mcmcoutput` object with swapped elements.
#' @exportMethod swapElements
#' @keywords internal
setMethod(
"swapElements", signature(
object = "mcmcoutputhier",
index = "array"
),
function(object, index) {
## Check arguments, TODO: .validObject ##
## Call method 'swapElements()' from 'mcmcoutputbase'
callNextMethod(object, index)
}
)
#' Getter method of `mcmcoutputhier` class.
#'
#' Returns the `hyper` slot.
#'
#' @param object An `mcmcoutputhier` object.
#' @returns The `hyper` slot of the `object`.
#' @exportMethod getHyper
#' @keywords internal
#'
#' @examples
#' # Define a Poisson mixture model with two components.
#' f_model <- model("poisson", par = list(lambda = c(0.3, 1.2)), K = 2)
#' # Simulate data from the mixture model.
#' f_data <- simulate(f_model)
#' # Define the hyper-parameters for MCMC sampling.
#' f_mcmc <- mcmc(storepost = FALSE)
#' # Define the prior distribution by relying on the data.
#' f_prior <- priordefine(f_data, f_model)
#' # Start MCMC sampling.
#' f_output <- mixturemcmc(f_data, f_model, f_prior, f_mcmc)
#' # Get the slot.
#' getHyper(f_output)
#'
#' @seealso
#' * [mcmcoutputhier-class] for the class definition
#' * [mixturemcmc()] for performing MCMC sampling
setMethod(
"getHyper", "mcmcoutputhier",
function(object) {
return(object@hyper)
}
)
## No setters as users are not intended to manipulate ##
## this object ##
### Private functions.
### These functions are not exported.
### Plot
### Plot traces
#' Plots traces of Poisson mixture samples
#'
#' @description
#' For internal usage only. This function plots the traces for sampled values
#' from a Poisson mixture model.
#'
#' @param x An `mcmcoutputhier` object containing all samples.
#' @param dev A logical indicating if the plot should be shown by a grapical
#' device.
#' @return A plot of the traces of sampled values.
#' @noRd
#'
#' @seealso
#' * [plotTraces()] for the calling function
".traces.Poisson.Base.Hier" <- function(x, dev) {
K <- x@model@K
trace.n <- K * 2
if (.check.grDevice() && dev) {
dev.new(title = "Traceplots")
}
par(
mfrow = c(trace.n, 1), mar = c(1, 0, 0, 0),
oma = c(4, 5, 4, 4)
)
lambda <- x@par$lambda
for (k in 1:K) {
plot(lambda[, k],
type = "l", axes = F,
col = "gray20", xlab = "", ylab = ""
)
axis(2, las = 2, cex.axis = 0.7)
mtext(
side = 2, las = 2, bquote(lambda[k = .(k)]),
cex = 0.6, line = 3
)
}
weight <- x@weight
for (k in 1:(K - 1)) {
plot(weight[, k],
type = "l", axes = F,
col = "gray47", xlab = "", ylab = ""
)
axis(2, las = 2, cex.axis = 0.7)
mtext(
side = 2, las = 2, bquote(eta[k = .(k)]),
cex = 0.6, line = 3
)
}
b <- x@hyper$b
plot(b,
type = "l", axes = F,
col = "gray68", xlab = "", ylab = ""
)
axis(2, las = 2, cex.axis = 0.7)
mtext(side = 2, las = 2, "b", cex = 0.6, line = 3)
axis(1)
mtext(side = 1, "Iterations", cex = 0.7, line = 3)
}
### Plot Histograms
#' Plot histograms of Poisson samples
#'
#' @description
#' For internal usage only. This function plots histograms of sampled Poisson
#' parameters and weights. In addition it plots the histogram of the
#' parameter `b` of the hierarchical prior.
#'
#' @param x An `mcmcoutputhier` object containing all sampled values.
#' @param dev A logical indicating, if the plots should be shown on a graphical
#' device.
#' @return A plot with histograms for the smapled parameters and weights.
#' @noRd
#'
#' @seealso
#' * [plotHist()] for the calling function
".hist.Poisson.Base.Hier" <- function(x, dev) {
K <- x@model@K
if (.check.grDevice() && dev) {
dev.new(title = "Histograms")
}
lambda <- x@par$lambda
weight <- x@weight
b <- x@hyper$b
vars <- cbind(lambda, weight[, seq(1, K - 1)], b)
lab.names <- vector("list", 2 * K)
for (k in seq(1, K)) {
lab.names[[k]] <- bquote(lambda[.(k)])
}
for (k in seq(K + 1, 2 * K - 1)) {
lab.names[[k]] <- bquote(eta[.(k - K)])
}
lab.names[[2 * K]] <- "b"
.symmetric.Hist(vars, lab.names)
}
### Plot Densities
#' Plot densities of Poisson samples
#'
#' @description
#' For internal usage only. This function plots densities of sampled Poisson
#' parameters and weights. In addition it plots the Kernel densities of the
#' parameter `b` of the hierarchical prior.
#'
#' @param x An `mcmcoutputhier` object containing all sampled values.
#' @param dev A logical indicating, if the plots should be shown on a graphical
#' device.
#' @return A plot with densities for the sampled parameters and weights.
#' @noRd
#'
#' @seealso
#' * [plotDens()] for the calling function
".dens.Poisson.Base.Hier" <- function(x, dev) {
K <- x@model@K
if (.check.grDevice() && dev) {
dev.new(title = "Densities")
}
lambda <- x@par$lambda
weight <- x@weight
b <- x@hyper$b
vars <- cbind(lambda, weight[, seq(1, K - 1)], b)
lab.names <- vector("list", 2 * K)
for (k in seq(1, K)) {
lab.names[[k]] <- bquote(lambda[.(k)])
}
for (k in seq(K + 1, 2 * K - 1)) {
lab.names[[k]] <- bquote(eta[.(k - K)])
}
lab.names[[2 * K]] <- "b"
.symmetric.Dens(vars, lab.names)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.