R/nmr_integrate_regions.R

Defines functions nmr_integrate_regions.nmr_dataset_1D rough_baseline nmr_integrate_regions

Documented in nmr_integrate_regions nmr_integrate_regions.nmr_dataset_1D

#' Integrate regions
#'
#' Integrate given regions and return a data frame with them
#' @param samples A [nmr_dataset] object
#' @param regions A named list. Each element of the list is a region,
#'                                given as a named numeric vector of length two with the range
#'                                to integrate. The name of the region will be the name of the
#'                                column
#'
#' @return An [nmr_dataset_peak_table] object
#'
#' @examples
#' # Creating a dataset
#' dataset <- new_nmr_dataset_1D(
#'     ppm_axis = 1:10,
#'     data_1r = matrix(sample(0:99, replace = TRUE), nrow = 10),
#'     metadata = list(external = data.frame(NMRExperiment = c(
#'         "10",
#'         "20", "30", "40", "50", "60", "70", "80", "90", "100"
#'     )))
#' )
#'
#' # Integrating selected regions
#' peak_table_integration <- nmr_integrate_regions(
#'     samples = dataset,
#'     regions = list(ppm = c(2, 5))
#' )
#'
#' @export
#' @family peak detection functions
#' @family peak integration functions
nmr_integrate_regions <- function(samples, regions, ...) {
    UseMethod("nmr_integrate_regions")
}

rough_baseline <- function(x, allow_baseline_above_signal = TRUE) {
    n <- length(x)
    if (n == 0) {
        return(numeric(0L))
    }
    basel <- signal::interp1(
        x = c(1, n),
        y = x[c(1, n)],
        xi = seq_len(n)
    )
    if (!allow_baseline_above_signal) {
        basel <- ifelse(basel > x, x, basel)
    }
    basel
}

#' @rdname nmr_integrate_regions
#' @family nmr_dataset_1D functions
#' @param fix_baseline A logical. If `TRUE` it removes the baseline. See details
#'                                below
#' @param excluded_regions_as_zero A logical. It determines the behaviour of the
#'    integration when integrating regions that have been excluded. If `TRUE`,
#'    it will treat those regions as zero. If `FALSE` (the default) it will return
#'    NA values.
#'
#'    If `fix_baseline` is `TRUE`, then the region boundaries are used to estimate
#'    a baseline. The baseline is estimated "connecting the boundaries with a straight
#'    line". Only when the spectrum is above the baseline the area is integrated
#'    (negative contributions due to the baseline estimation are ignored).
#'
#' @param set_negative_areas_to_zero A logical. Ignored if `fix_baseline` is `FALSE`.
#'     When set to `TRUE` negative areas are set to zero.
#'
#' @param ... Keep for compatibility
#' @export
#' @examples
#' # Creating a dataset
#' dataset <- new_nmr_dataset_1D(
#'     ppm_axis = 1:10,
#'     data_1r = matrix(sample(0:99, replace = TRUE), nrow = 10),
#'     metadata = list(external = data.frame(NMRExperiment = c(
#'         "10",
#'         "20", "30", "40", "50", "60", "70", "80", "90", "100"
#'     )))
#' )
#'
#' # Integrating selected regions
#' peak_table_integration <- nmr_integrate_regions(
#'     samples = dataset,
#'     regions = list(ppm = c(2, 5)),
#'     fix_baseline = FALSE
#' )
#'
nmr_integrate_regions.nmr_dataset_1D <- function(samples,
    regions,
    fix_baseline = FALSE,
    excluded_regions_as_zero = FALSE,
    set_negative_areas_to_zero = FALSE,
    ...) {
    if (is.null(names(regions))) {
        names(regions) <-
            purrr::map_chr(regions, ~ sprintf("ppm_%4.4f", mean(.)))
    }
    ppm_res <- nmr_ppm_resolution(samples)
    areas <- purrr::map_dfc(regions, function(region) {
        to_sum <- samples$axis >= min(region) & samples$axis < max(region)
        # If there are no ppm to sum, or if we are integrating an excluded region,
        # then return NA.
        if (isTRUE(excluded_regions_as_zero)) {
            integrating_allowed <- TRUE
        } else {
            # I don't care about 3*ppm_res or 2*ppm_res, but I leave some margin just in case:
            integrating_allowed <-
                all(diff(samples$axis[to_sum]) < 3 * ppm_res)
        }
        if (all(to_sum == FALSE) || !integrating_allowed) {
            return(NA * numeric(nrow(samples$data_1r)))
        }
        region_to_sum <- samples$data_1r[, to_sum]
        area <- rowSums(region_to_sum)
        if (fix_baseline) {
            basel <- t(
                apply(
                    region_to_sum,
                    1,
                    rough_baseline,
                    allow_baseline_above_signal = !set_negative_areas_to_zero
                )
            )
            area_basel <- rowSums(basel)
            area <- area - area_basel
        }
        area * ppm_res
    })
    new_nmr_dataset_peak_table(
        peak_table = as.matrix(areas),
        metadata = samples$metadata
    )
}

#' Integrate peak positions
#'
#' The function allows the integration of a given ppm vector with a specific width.
#'
#' @return Integrate peak positions
#' @name nmr_integrate_peak_positions
#' @param samples A [nmr_dataset] object
#' @param peak_pos_ppm The peak positions, in ppm
#' @param peak_width_ppm The peak widths (or a single peak width for all peaks)
#' @inheritDotParams nmr_integrate_regions
#'
#' @inherit nmr_integrate_regions return
#' @export
#' @family peak integration functions
#' @family nmr_dataset_1D functions
nmr_integrate_peak_positions <- function(samples,
    peak_pos_ppm,
    peak_width_ppm = 0.006,
    ...) {
    # Computes the alanine peak_width_ppm
    if (is.null(peak_width_ppm)) {
        peak_width_ppm <- computes_peak_width_ppm(samples)
    }

    # dataframe as input
    if (is.data.frame(peak_pos_ppm)) {
        message("peak_pos_ppm input introduced as dataframe")
        peak_pos_ppm <- peak_pos_ppm$ppm
    }

    regions <- regions_from_peak_table(peak_pos_ppm, peak_width_ppm)
    nmr_integrate_regions(samples, regions, ...)
}

#' Get integrals with metadata from `integrate peak positions`
#'
#' @param integration_object A [nmr_dataset] object
#' @return Get integrals with metadata from `integrate peak positions`
#' @export
#'
#' @family peak integration functions
#' @family nmr_dataset_1D functions
#' @return integration dataframe
#' @examples
#' peak_table <- matrix(1:6, nrow = 2, ncol = 3)
#' rownames(peak_table) <- c("10", "20")
#' colnames(peak_table) <- c("ppm_1.2", "ppm1.4", "ppm1.6")
#'
#' dataset <- new_nmr_dataset_peak_table(
#'     peak_table = peak_table,
#'     metadata = list(external = data.frame(NMRExperiment = c("10", "20"), Condition = c("A", "B")))
#' )
#' get_integration_with_metadata(dataset)
get_integration_with_metadata <- function(integration_object) {
    integration_data <- nmr_data(integration_object)
    meta_data <- nmr_meta_get(integration_object, groups = "external")
    integration_dataframe <- tibble::as_tibble(cbind(meta_data, integration_data))
    return(integration_dataframe)
}
sipss/AlpsNMR documentation built on Aug. 13, 2024, 5:11 p.m.