## SKG
## 2/4/20
## Calculating likelhood and making trees
##
## Generate partition list
part_list <- generate_part_list(n = 25)
g_weight_list <- get_weight_list(part_list)
K <- 100
inf_params <- c("beta_0" = -2, "beta_1" = 1.5)
max_size <- 26
smear_pos_prob <- .5
forest <- simulate_flip_til_failure(K = K,
inf_params = inf_params,
smear_pos_prob = smear_pos_prob,
max_size = max_size)
bark <- summarize_clusters(forest)
## Make samples of data
expect_equal(length(out), 1)
n_trials <- 1000
cluster_summary <- bark
n <- cluster_summary$n
n_pos <- cluster_summary$n_pos
n_vec <- rep(n, each = n_trials)
n_pos_vec <- rep(n_pos, each = n_trials)
par <- c("beta_1" = 1, "beta_0" = 0)
one_init <- TRUE
## Sample trees of n people with n_pos
sampled_trees <- simulate_many_cond_bp(K = length(n_vec),
n_vec = n_vec, n_pos_vec = n_pos_vec,
part_list = part_list,
g_weight_list = g_weight_list,
one_init = one_init)
out <- loglike_cluster_summary(par = par,
cluster_summary = cluster_summary,
part_list = part_list,
g_weight_list = g_weight_list,
sampled_trees = sampled_trees,
one_init = one_init,
return_neg = FALSE,
n_trials = n_trials)
out2 <- optim(par = par, fn = loglike_cluster_summary,
cluster_summary = cluster_summary,
part_list = part_list,
g_weight_list = g_weight_list,
sampled_trees = sampled_trees,
one_init = one_init,
return_neg = TRUE,
n_trials = n_trials)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.