test_that("summarize_clusters", {
inf_params <- c("beta_0" = -2, "beta_1" = 1)
smear_pos_prob <- .8
max_size <- 30
K <- 5
out <- simulate_flip_til_failure(K = K,
inf_params = inf_params,
smear_pos_prob = smear_pos_prob,
max_size = max_size)
out2 <- summarize_clusters(out)
expect_true(nrow(out2) >= 1)
})
test_that("simulate_flip_til_failure", {
inf_params <- c("beta_0" = -2, "beta_1" = 1)
smear_pos_prob <- .8
max_size <- 30
K <- 5
out <- simulate_flip_til_failure(K = K,
inf_params = inf_params,
smear_pos_prob = smear_pos_prob,
max_size = max_size)
expect_equal(length(unique(out$cluster_id)), K)
})
test_that("simulate_flip_til_failure", {
cluster_id <- 1
inf_params <- c("beta_0" = -2, "beta_1" = 1)
smear_pos_prob <- 1
max_size <- 5
out <- flip_til_failure(cluster_id = cluster_id,
inf_params = inf_params,
smear_pos_prob = smear_pos_prob,
max_size = max_size)
expect_true(nrow(out) <= max_size)
#######################
######################### High chance of infeaciton
cluster_id <- 1
inf_params <- c("beta_0" = 2, "beta_1" = 1)
smear_pos_prob <- .5
max_size <- 5
out <- flip_til_failure(cluster_id = cluster_id,
inf_params = inf_params,
smear_pos_prob = smear_pos_prob,
max_size = max_size)
expect_true(nrow(out) <= max_size)
expect_true(out$censored[1])
## A regular one
cluster_id <- 1
inf_params <- c("beta_0" = -2, "beta_1" = 1.5)
smear_pos_prob <- .5
max_size <- 25
out <- flip_til_failure(cluster_id = cluster_id,
inf_params = inf_params,
smear_pos_prob = smear_pos_prob,
max_size = max_size)
})
test_that("generation infection", {
cluster_id <- 1
p_pos <- .3
p_neg <- 0.00001
smear_pos_prob <- .4
gen <- 2
ng <- 3
prev_gen <- data.frame(smear = c(0, 1, 0),
person_id = paste0("C", cluster_id, "-G", gen,
"-N", 1:ng) )
cluster_size <- 3
max_size <- 10
out <- generation_infection(cluster_id = cluster_id,
p_pos = p_pos,
p_neg = p_neg,
smear_pos_prob = smear_pos_prob,
gen = gen,
prev_gen = prev_gen,
cluster_size = cluster_size,
max_size = max_size)
expect_equal(length(out), 3)
############################
cluster_id <- 1
p_pos <- .3
p_neg <- 0.000001
smear_pos_prob <- .4
gen <- 2
ng <- 3
prev_gen <- data.frame(smear = c(0, 0, 0),
person_id = paste0("C", cluster_id, "-G", gen,
"-N", 1:ng))
cluster_size <- 3
max_size <- 10
out <- generation_infection(cluster_id = cluster_id,
p_pos = p_pos,
p_neg = p_neg,
smear_pos_prob = smear_pos_prob,
gen = gen,
prev_gen = prev_gen,
cluster_size = cluster_size,
max_size = max_size)
expect_true(is.null(out$cur_gen))
#######################
cluster_id <- 1
p_pos <- 1
p_neg <- 0.000001
smear_pos_prob <- 1
gen <- 2
ng <- 1
prev_gen <- data.frame(smear = c(1),
person_id = paste0("C", cluster_id, "-G", gen,
"-N", 1:ng))
cluster_size <- 3
max_size <- 10
out <- generation_infection(cluster_id = cluster_id,
p_pos = p_pos,
p_neg = p_neg,
smear_pos_prob = smear_pos_prob,
gen = gen,
prev_gen = prev_gen,
cluster_size = cluster_size,
max_size = max_size)
expect_equal(nrow(out$cur_gen), max_size - cluster_size)
#######################
cluster_id <- 1
p_pos <- 1
p_neg <- 0.000001
smear_pos_prob <- 1
gen <- 2
ng <- 2
prev_gen <- data.frame(smear = c(0,1),
person_id = paste0("C", cluster_id, "-G", gen,
"-N", 1:ng))
cluster_size <- 3
max_size <- 10
out <- generation_infection(cluster_id = cluster_id,
p_pos = p_pos,
p_neg = p_neg,
smear_pos_prob = smear_pos_prob,
gen = gen,
prev_gen = prev_gen,
cluster_size = cluster_size,
max_size = max_size)
expect_equal(nrow(out$cur_gen), max_size - cluster_size)
expect_equal(unique(out$cur_gen$inf_id), prev_gen$person_id[2])
expect_equal(out$n_inf, c(0, 7))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.