set.seed(seed = 12345)
require(rstan)
# Stan generative model
sim_stan <- "
functions {
int zibb_rng(int n, real mu, real phi, real kappa) {
if (bernoulli_rng(kappa) == 1) {
return (0);
} else {
return (beta_binomial_rng(n, mu * phi, (1 - mu) * phi));
}
}
}
data {
int<lower=0> N_gene; // gene
int<lower=0> N_individual; // number of individuals
int<lower=0> N_condition; // number of conditions
int<lower=0> N; // repertoire size
array [N_individual] int condition_id; // id of conditions
real <lower=0> phi;
real <lower=0, upper=1> kappa;
vector <lower=0> [N_condition] sigma_individual;
vector <lower=0> [N_condition] sigma_condition;
}
generated quantities {
vector [N_gene] alpha;
array [N_individual] vector <lower=0, upper=1> [N_gene] theta;
array [N_individual] vector [N_gene] beta_individual;
array [N_condition] vector [N_gene] beta_condition;
// generate usage
array [N_gene, N_individual] int Y;
for(i in 1:N_condition) {
for(j in 1:N_gene) {
beta_condition[i][j] = normal_rng(0, sigma_condition[i]);
}
}
for(i in 1:N_gene) {
alpha[i] = normal_rng(-3.0, 1.0);
for(j in 1:N_individual) {
beta_individual[j][i] = normal_rng(beta_condition[condition_id[j]][i], sigma_individual[condition_id[j]]);
theta[j][i] = inv_logit(alpha[i] + beta_individual[j][i]);
Y[i,j] = zibb_rng(N, theta[j][i], phi, kappa);
}
}
}
"
# compile model
m <- rstan::stan_model(model_code = sim_stan)
# generate data based on following fixed parameters
set.seed(123456)
N_condition <- 3
N_individual <- 5
N_gene <- 8
N <- 10^3
sigma_individual <- runif(n = N_condition, min = 0.1, max = 0.2)
sigma_condition <- runif(n = N_condition, min = 0.2, max = 0.6)
phi <- 200
kappa <- 0.015
condition_id <- rep(x = 1:N_condition, each = N_individual)
l <- list(N_individual = N_individual*N_condition,
N_gene = N_gene,
N_condition = N_condition,
N = N,
condition_id = condition_id,
sigma_individual = sigma_individual,
sigma_condition = sigma_condition,
phi = phi,
kappa = kappa)
# simulate
sim <- rstan::sampling(object = m,
data = l,
iter = 1,
chains = 1,
algorithm = "Fixed_param",
seed = 12346)
# extract simulation and convert into data frame which can
# be used as input of IgGeneUsage
ysim <- rstan::extract(object = sim, par = "Y")$Y
ysim <- ysim[1,,]
ysim_df <- reshape2::melt(ysim)
colnames(ysim_df) <- c("gene_name", "individual_id", "gene_usage_count")
m <- data.frame(individual_id = 1:l$N_individual, condition = l$condition_id)
ysim_df <- merge(x = ysim_df, y = m, by = "individual_id", all.x = TRUE)
ysim_df$condition <- paste0("C_", ysim_df$condition)
ysim_df$gene_name <- paste0("G_", ysim_df$gene_name)
ysim_df$individual_id <- paste0("I_", ysim_df$individual_id)
d_zibb_3 <- ysim_df
# save
save(d_zibb_3, file = "data/d_zibb_3.RData", compress = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.