model {
# Define likelihood model for data:
for (p in 1:N_patients)
{
# probability of belonging to the bad group
bad.p[p] ~ dbern(prob.of.bad.hosp)
# index the bad group in ac.prob
index.bad.p[p] <- bad.p[p] + 1
for(a in 1:antibiotic_classes)
{
# Response is different for each antibiotic and depending on
# which pop it's from
response[h_GUID[p],a] ~
dbern(acsm.prob[a,
index.bad.p[p],
clinical[sample_type[h_sample_GUID[p]]],
sample_season[h_sample_GUID[p]]])
}
}
for (gp in 1:N_gp)
{
# probability of belonging to the bad group
bad.gp[gp] ~ dbern(prob.of.bad.gp)
# index the bad group in ac.prob
index.bad.gp[gp] <- bad.gp[gp] + 1
for(a in 1:antibiotic_classes)
{
# Response is different for each antibiotic and depending on
# which pop it's from
response[gp_GUID[gp],a] ~ dbern(asm.gp.prob[a,
index.bad.gp[gp],
sample_season[gp_sample_GUID[gp]]])
}
}
for (v in 1:N_volunteers)
{
# probability of belonging to the bad group
bad.v[v] ~ dbern(prob.of.bad.vol)
# index the bad group in ac.prob
index.bad.v[v] <- bad.v[v] + 1
for(a in 1:antibiotic_classes)
{
# Response is different for each antibiotic and depending on
# which pop it's from
response[v_GUID[v],a] ~ dbern(asm.v.prob[a,
index.bad.v[v],
sample_season[v_sample_GUID[v]]])
}
}
for (o in 1:N_outpatients)
{
# probability of belonging to the bad group
bad.o[o] ~ dbern(prob.of.bad.out)
# index the bad group in ac.prob
index.bad.o[o] <- bad.o[o] + 1
for(a in 1:antibiotic_classes)
{
# Response is different for each antibiotic and depending on
# which pop it's from
response[o_GUID[o],a] ~ dbern(asm.o.prob[a,
index.bad.o[o],
sample_season[o_sample_GUID[o]]])
}
}
# ------------------------
# Define the priors:
for(a in 1:antibiotic_classes)
{
# probability of being resistant in the good group (less resistances)
antibiotic.class.effect[a, 1] ~ dnorm(intercept, tau.class)
logit(a.prob[a,1]) <- antibiotic.class.effect[a, 1]
# probability of being resistant in the bad group (many resistances) will
# always be higher than the good group
antibiotic.class.effect[a, 2] ~ dnorm(intercept.plus, tau.class)
logit(a.prob[a,2]) <- antibiotic.class.effect[a, 2]
for(b in 1:2)
{ # good bad
for (c in c(ncarr, nclin)) # 1, 2!
{
ac.effect[a,b,c] ~ dnorm(antibiotic.class.effect[a,b], tau.clin)
logit(ac.prob[a,b,c]) <- ac.effect[a,b,c]
for(s in 1:N_sample_season)
{
logit(acsm.prob[a,b,c,s]) <- ac.effect[a,b,c] + sampleseason.effect[s]
}
}
a.gp.effect[a,b] <- ac.effect[a,b,gp_clinical]
a.v.effect[a,b] <- ac.effect[a,b,v_clinical]
a.o.effect[a,b] <- ac.effect[a,b,o_clinical]
logit(a.gp.prob[a,b]) <- a.gp.effect[a,b]
logit(a.v.prob[a,b]) <- a.v.effect[a,b]
logit(a.o.prob[a,b]) <- a.o.effect[a,b]
for(s in 1:N_sample_season)
{
logit(asm.gp.prob[a,b,s]) <- a.gp.effect[a,b] + sampleseason.effect[s]
logit(asm.v.prob[a,b,s]) <- a.v.effect[a,b] + sampleseason.effect[s]
logit(asm.o.prob[a,b,s]) <- a.o.effect[a,b] + sampleseason.effect[s]
}
}
}
for(s in 1:N_sample_season)
{
sampleseason.effect[s] ~ dnorm(0, tau.sampleseason)
}
# Prior value for intercept
intercept ~ dnorm(0, 0.001)
# Difference between distribution means of "good" and "bad" groups
diff ~ dgamma(0.001, 0.001)
intercept.plus <- intercept + diff
# Probability of being in the bad group
prob.of.bad.hosp ~ dbeta(1, 1)
prob.of.bad.gp ~ dbeta(1, 1)
prob.of.bad.vol ~ dbeta(1, 1)
prob.of.bad.out ~ dbeta(1, 1)
# Prior values for precision
tau.class ~ dgamma(0.001, 0.001)
tau.clin ~ dgamma(0.001, 0.001)
tau.sampleseason ~ dgamma(0.001, 0.001)
# Convert precisions to sd
sd.class <- sqrt(1/tau.class)
sd.clin <- sqrt(1/tau.clin)
sd.sampleseason <- sqrt(1/tau.sampleseason)
#monitor# full.pd, dic, deviance, a.prob, ac.prob, a.gp.prob, a.v.prob, a.o.prob, prob.of.bad.hosp, prob.of.bad.gp, prob.of.bad.vol, prob.of.bad.out, bad.p, bad.gp, bad.v, bad.o, intercept, sd.class, sd.clin, sd.sampleseason
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.