# Latent variable model / hierarchical model
model {
# Define likelihood model for data: f(y_i|theta)
for (p in 1:N_patients) {
# probability of belonging to the bad group (latent variable)
bad.p[p] ~ dbern(prob.of.bad.hosp)
# index the bad group in ac.prob
index.bad.p[p] <- bad.p[p] + 1
for(a in 1:antibiotic_classes) {
# Response is different for each antibiotic and depending on
# which pop it's from
response[h_GUID[p],a] ~
dbern(ac.prob[a,
index.bad.p[p],
clinical[sample_type[h_sample_GUID[p]]]])
}
}
for (gp in 1:N_gp) {
# probability of belonging to the bad group
bad.gp[gp] ~ dbern(prob.of.bad.gp)
# index the bad group in ac.prob
index.bad.gp[gp] <- bad.gp[gp] + 1
for(a in 1:antibiotic_classes) {
# Response is different for each antibiotic and depending on
# which pop it's from
response[gp_GUID[gp],a] ~ dbern(a.gp.prob[a, index.bad.gp[gp]])
}
}
for (v in 1:N_volunteers) {
# probability of belonging to the bad group
bad.v[v] ~ dbern(prob.of.bad.vol)
# index the bad group in ac.prob
index.bad.v[v] <- bad.v[v] + 1
for(a in 1:antibiotic_classes)
{
# Response is different for each antibiotic and depending on
# which pop it's from
response[v_GUID[v],a] ~ dbern(a.v.prob[a, index.bad.v[v]])
}
}
for (o in 1:N_outpatients) {
# probability of belonging to the bad group
bad.o[o] ~ dbern(prob.of.bad.out)
# index the bad group in ac.prob
index.bad.o[o] <- bad.o[o] + 1
for(a in 1:antibiotic_classes)
{
# Response is different for each antibiotic and depending on
# which pop it's from
response[o_GUID[o],a] ~ dbern(a.o.prob[a, index.bad.o[o]])
}
}
# ------------------------
# Define the priors:
for(a in 1:antibiotic_classes) {
# probability of being resistant in the good group (less resistances)
antibiotic.class.effect[a] ~ dnorm(intercept, tau.class)
antibiotic.class.diff[a] ~ dnorm(diff, tau.diff)
logit(a.prob[a,1]) <- antibiotic.class.effect[a] - antibiotic.class.diff[a] / 2
# probability of being resistant in the bad group (many resistances) will
# always be higher than the good group
logit(a.prob[a,2]) <- antibiotic.class.effect[a] + antibiotic.class.diff[a] / 2
for(b in 1:2) { # good bad
for (c in c(ncarr, nclin)) { # 1, 2!
ac.effect[a,b,c] ~ dnorm(antibiotic.class.effect[a,b], tau.clin)
logit(ac.prob[a,b,c]) <- ac.effect[a,b,c]
}
a.gp.effect[a,b] <- ac.effect[a,b,gp_clinical]
a.v.effect[a,b] <- ac.effect[a,b,v_clinical]
a.o.effect[a,b] <- ac.effect[a,b,o_clinical]
logit(a.gp.prob[a,b]) <- a.gp.effect[a,b]
logit(a.v.prob[a,b]) <- a.v.effect[a,b]
logit(a.o.prob[a,b]) <- a.o.effect[a,b]
}
}
# Prior value for intercept
intercept ~ dnorm(0, 0.001)
# Difference between distribution means of "good" and "bad" groups
diff ~ dgamma(0.001, 0.001)
intercept.plus <- intercept + diff
# Probability of being in the bad group
prob.of.bad.hosp ~ dbeta(1, 1)
prob.of.bad.gp ~ dbeta(1, 1)
prob.of.bad.vol ~ dbeta(1, 1)
prob.of.bad.out ~ dbeta(1, 1)
# Prior values for precision
tau.class ~ dgamma(0.001, 0.001)
tau.clin ~ dgamma(0.001, 0.001)
tau.diff ~ dgamma(0.001, 0.001)
# Convert precisions to sd
sd.class <- sqrt(1/tau.class)
sd.clin <- sqrt(1/tau.clin)
sd.diff <- sqrt(1/tau.diff)
#monitor# full.pd, dic, deviance, a.prob, ac.prob, a.gp.prob, a.v.prob, a.o.prob, prob.of.bad.hosp, prob.of.bad.gp, prob.of.bad.vol, prob.of.bad.out, bad.p, bad.gp, bad.v, bad.o, intercept, sd.class, sd.clin, sd.diff
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.