Description Usage Arguments Value Author(s) See Also Examples
View source: R/opt_design_fda.R
Selects optimal sampling points for functional data under Functional Principal Component Analysis (FPCA) and Functional Linear Model (FLM) frameworks. Unified objective function is used to determine optimal points. Joint optimal design points can also be obtained with appropriately defined design criterion matrix, B.
1 | opt_design_fda(p = 2, Phi, lambda, B = NULL, sigma2 = 10^-14)
|
p |
number of optimal sampling points to be selected |
Phi |
d by L matrix of eigenfunctions evaluated at d candidate points; L is number of PCs. |
lambda |
eigenvalues; a vector of length L |
B |
design criterion matrix (e.g. for recovering curves, B = diag(L); a square matrix with dim = L |
sigma2 |
measurement error variance associated with functional object. |
index_opt index of d candidate points that corresponds to the selected optimal points.
obj_opt prediction error with the p selected optimal points; i.e. objective function evaluated at the p selected optimal points.
obj_opt_limit prediction error with d candidate points (smallest prediction error).
error.level obj_opt/obj_opt_limit; relative measure of how large prediction error with the p selected optimal points is to that with d candidate points.
index_all_comb all possible combinations of p points from the candidate set; p by (d choose p) matrix
obj_eval_all objective function evaluated at index_all_comb
.
INPUT input of opt_design_fda
provided as input.
So Young Park spark13@ncsu.edu, Luo Xiao lxiao5@ncsu.edu, Ana-Maria Staicu astaicu@ncsu.edu
opt_design_fda
/
selection_p
/
interactive_plot
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | ## Not run: rm(list=ls())
library(face)
# define true eigen-components and npc
K = 5
efn_sin <- function(k,t){return(sqrt(2)*sin((k+1)*pi*t))}
efn_cos <- function(k,t){return(sqrt(2)*cos((k)*pi*t))}
evl <- function(k){return(2^-k*10)}
evalue0 <- sapply(1:K, function(k) evl(k = k))
# set sample size and number of repeated measures per subject (7 to 10)
n = 400
mi.min = 7; mi.max = 10
# set true signal to noise ration and compute corresponding
SNR = 5
sigma2.true <- sum(evalue0)/SNR
# set variance for scalar response Y
sigma2.y <- 2^2
# set true basis coefficients
beta <- matrix(c(4, 2.5, 1.5, 1, 0.5))
#===============================================================
# Function Data Generation (irregular / sparse)
#===============================================================
set.seed(2016)
mi = round(runif(n = n, min = mi.min, max = mi.max))
scr.true <- matrix(NA, nrow=n, ncol=K)
i.vec <- tt.vec <- c(); Y1.vec <- c()
for(subj in 1:n){
# each subject #
m = mi[subj]
ti = sort(runif(n = m, min = 0, max=1))
eigfn <- matrix(NA, nrow=length(ti), ncol = length(evalue0))
for(k in 1:K){
if(!is.integer(k/2)){
eigfn[,k] <- efn_sin(k=k, t=ti)
}else{
eigfn[,k] <- efn_cos(k=k, t=ti)
}
}
scr <- do.call(cbind, lapply(evalue0, function(l) rnorm(1, mean = 0, sd=sqrt(l))))
scr.true[subj,] <- scr
random <- as.vector(eigfn %*% t(scr))
err <- rnorm(length(random), mean = 0, sd = sqrt(sigma2.true))
Y1 <- random + err
i.vec <- c(i.vec,rep(subj, length(ti)))
tt.vec <- c(tt.vec, ti)
Y1.vec <- c(Y1.vec, Y1)
}
error.y <- rnorm(n = n, mean = 0, sd = sqrt(sigma2.y))
scalar.y <- scr.true%*%beta + error.y
myFuncDat <- data.frame(argvals=tt.vec, subj=i.vec, y=Y1.vec)
#===============================================================
# Functional Principal Component Analysis (FPCA) Case
#===============================================================
T0 <- 21
t.eq <- seq(0,1,length.out=T0)
fit <- face.sparse(data = myFuncDat, knots = 10,
argvals.new=t.eq, newdata = myFuncDat,
calculate.scores=TRUE, pve = 0.95)
Phi.hat <- fit$eigenfunctions
lambda.hat <- fit$eigenvalues
sigma2.hat <- mean(as.vector(as.matrix(fit$var.error.new)))
p = 3
optT.hat <- opt_design_fda(p=p, Phi=Phi.hat, lambda=lambda.hat, sigma2=sigma2.hat)
names(optT.hat)
# [1] "index_opt" "obj_opt" "obj_opt_limit"
# "error.level" "index_all_comb" "obj_eval_all" "INPUT"
# selected optimal sampling points
optT.hat$index_opt # [1] 5 14 18
t.eq[optT.hat$index_opt] #[1] 0.20 0.65 0.85
# objective function evaluated with T0 = 21 grid of points (the best we can do)
optT.hat$obj_opt_limit #[1] 0.4435131
# prediction error with three optimal points
optT.hat$obj_opt # [1] 2.142494
# error level with p = 3
optT.hat$obj_opt/optT.hat$obj_opt_limit; optT.hat$error.level # [1] 4.830735
# example of selection_p() function
optT.hat.all <- selection_p(p_vec = c(1,3,4), threshold = 5, Phi=Phi.hat,
lambda=lambda.hat, sigma2=sigma2.hat)
optT.hat.all$p.sel # [1] 3
optT.hat.all$opt.sel[[1]]$index_opt # [1] 5 14 18 (same as optT.hat$index_opt)
# example of interactive_plot() function
optT.hat.first.three <- selection_p(p_vec = 1:3, threshold = 5, Phi=Phi.hat,
lambda=lambda.hat, sigma2=sigma2.hat)
interactive_plot(optT.hat.first.three)
#===============================================================
# Functional Linear Model (FLM) for fixed p = 3
#===============================================================
scr.hat <- fit$scores$scores
Xhat <- scr.hat %*% t(Phi.hat)
fit1 <- pfr(scalar.y ~ lf(Xhat, k = 10))
coef <- coef(fit1)
beta.hat <- t(coef$value)%*% Phi.hat / T0
beta.hat <- matrix(beta.hat, nrow=length(beta.hat))
optT.hat <- opt_design_fda(p=p, B = beta.hat%*%t(beta.hat),
Phi=Phi.hat, lambda=lambda.hat, sigma2=sigma2.hat)
# selected optimal sampling points
optT.hat$index_opt # [1] 4 5 15
t.eq[optT.hat$index_opt] # [1] 0.15 0.20 0.70
# objective function evaluated with T0 = 21 grid of points (the best we can do)
optT.hat$obj_opt_limit # [1] 2.696117
# prediction error with three optimal points
optT.hat$obj_opt # [1] 7.350046
# error level with p = 3
optT.hat$obj_opt/optT.hat$obj_opt_limit; optT.hat$error.level # [1] 2.72616
# example of selection_p() function
optT.hat.all <- selection_p(p_vec = c(1,3,4), threshold = 5, B = beta.hat%*%t(beta.hat),
Phi=Phi.hat, lambda=lambda.hat, sigma2=sigma2.hat)
optT.hat.all$p.sel # [1] 3
optT.hat.all$opt.sel[[1]]$index_opt # [1] 4 5 15 (same as optT.hat$index_opt)
# example of interactive_plot() function
optT.hat.first.three <- selection_p(p_vec = 1:3, threshold = 5, B = beta.hat%*%t(beta.hat),
Phi=Phi.hat, lambda=lambda.hat, sigma2=sigma2.hat)
interactive_plot(optT.hat.first.three)
#===============================================================
# Joint Optimal Design for fixed p = 3
#===============================================================
B <- diag(length(lambda.hat))/sum(lambda.hat)
B <- B + beta.hat%*% t(beta.hat)/sum(lambda.hat*beta.hat^2)
optT.hat <- opt_fda_search(p=p, B = B,
Phi=Phi.hat, lambda=lambda.hat, sigma2=sigma2.hat)
# selected optimal sampling points
optT.hat$index_opt # [1] 4 13 17
t.eq[optT.hat$index_opt] # [1] 0.15 0.60 0.80
# objective function evaluated with T0 = 21 grid of points (the best we can do)
optT.hat$obj_opt_limit # [1] 0.08552796
# prediction error with three optimal points
optT.hat$obj_opt # [1] 0.3832871
# error level with p = 3
optT.hat$obj_opt/optT.hat$obj_opt_limit; optT.hat$error.level # [1] 4.481425
# example of selection_p() function
optT.hat.all <- selection_p(p_vec = c(1,3,4), threshold = 5, B = B,
Phi=Phi.hat, lambda=lambda.hat, sigma2=sigma2.hat)
optT.hat.all$p.sel # [1] 3
optT.hat.all$opt.sel[[1]]$index_opt # [1] 4 13 17 (same as optT.hat$index_opt)
# example of interactive_plot() function
optT.hat.first.three <- selection_p(p_vec = 1:3, threshold = 5, B = B,
Phi=Phi.hat, lambda=lambda.hat, sigma2=sigma2.hat)
interactive_plot(optT.hat.first.three)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.