estimateCutoff: Estimate Epidemiological Cutoff Values

Description Usage Arguments Details Value References Examples

View source: R/estimateCutoff.R

Description

The function estimateCutoff contains an algorithm designed to estimate an Epidemiological Cutoff Value of Zone Data pairings of bacteria and antibiotics. The method was inspired by the paper "Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values".

Usage

1
2
estimateCutoff(obs, diam = 6:50, start = "mean", fit = "n_abs",
  q = 0.0075, plot = FALSE)

Arguments

obs

numeric vector giving the absolute frequency of observations per diameter

diam

numeric vector containing the diameter range (in mm), same length as obs, with default from 6:50

start

method for estimating mean start parameter; default: "mean", other option: "peak1"

fit

criterium for the fit; default: "n_abs", other options: "Pmean", "Psd", "Pn", "sigma"

q

numeric value for the quantile of the distribution; default: 0.0075

plot

logical; if FALSE (default) no plot is drawn

Details

Normal distributions are fitted to several subsets of the data, where (a part of) the most resistant data is removed. For this, Nonlinear Least Squares is used, which needs to be initzialized with starting values.

There are two options to estimate the start value of the parameter mean of the fitted normal distribution:

To determine the subset which yields the best fitted normal distribution, one of the following criteria needs to be chosen:

Here, the default value is "n_ab", which is also used in the original algorithm for MIC data.

Value

numeric value, estimate for the ECOFF

References

Turnidge, J., Kahlmeter, G., Kronvall, G. (2006) Statistical characterization of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin Microbial Infect 12: 418-425 doi: 10.1111/j.1469-0691.2006.01377.x

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
data("ZD", package = "EUCASTData") #load data
observations <- as.numeric(ZD[706,4:48])
estimateCutoff(observations, start = "peak1", fit = "n_abs", plot=TRUE)
example1 <- as.numeric(subset(ZD, Antimicrobial == "Ampicillin" & Bacterium == "Escherichia coli",
  grepl("^Z", colnames(ZD))))
estimateCutoff(example1, start = "peak1", fit = "n_abs", plot=TRUE)
example2 <- as.numeric(subset(ZD, Antimicrobial == "Piperacillin" & Bacterium == "Escherichia coli",
  grepl("^Z", colnames(ZD))))
estimateCutoff(example2, start = "peak1", fit = "n_abs", plot=TRUE)
example3 <- as.numeric(subset(ZD, Antimicrobial == "Mecillinam" & Bacterium == "Escherichia coli",
  grepl("^Z", colnames(ZD))))
estimateCutoff(example3, start = "peak1", fit = "n_abs", plot=TRUE)

sp2019-antibiotics/bacSplittR documentation built on Nov. 5, 2019, 9:14 a.m.