#
# rmhmodel.ppm.R
#
# convert ppm object into format palatable to rmh.default
#
# $Revision: 2.65 $ $Date: 2022/01/03 05:37:32 $
#
# .Spatstat.rmhinfo
# rmhmodel.ppm()
#
.Spatstat.Rmhinfo <-
list(
"Multitype Hardcore process" =
function(coeffs, inte) {
# hard core radii r[i,j]
hradii <- inte$par[["hradii"]]
return(list(cif='multihard',
par=list(hradii=hradii),
ntypes=ncol(hradii)))
},
"Lennard-Jones process" =
function(coeffs, inte) {
pa <- inte$interpret(coeffs,inte)$param
sigma <- pa[["sigma"]]
epsilon <- pa[["epsilon"]]
return(list(cif='lennard',
par=list(sigma=sigma, epsilon=epsilon),
ntypes=1))
},
"Fiksel process" =
function(coeffs, inte) {
hc <- inte$par[["hc"]]
r <- inte$par[["r"]]
kappa <- inte$par[["kappa"]]
a <- inte$interpret(coeffs,inte)$param$a
return(list(cif='fiksel',
par=list(r=r,hc=hc,kappa=kappa,a=a),
ntypes=1))
},
"Diggle-Gates-Stibbard process" =
function(coeffs, inte) {
rho <- inte$par[["rho"]]
return(list(cif='dgs',
par=list(rho=rho),
ntypes=1))
},
"Diggle-Gratton process" =
function(coeffs, inte) {
kappa <- inte$interpret(coeffs,inte)$param$kappa
delta <- inte$par[["delta"]]
rho <- inte$par[["rho"]]
return(list(cif='diggra',
par=list(kappa=kappa,delta=delta,rho=rho),
ntypes=1))
},
"Hard core process" =
function(coeffs, inte) {
hc <- inte$par[["hc"]]
return(list(cif='hardcore',
par=list(hc=hc),
ntypes=1))
},
"Geyer saturation process" =
function(coeffs, inte) {
gamma <- inte$interpret(coeffs,inte)$param$gamma
r <- inte$par[["r"]]
sat <- inte$par[["sat"]]
return(list(cif='geyer',
par=list(gamma=gamma,r=r,sat=sat),
ntypes=1))
},
"Soft core process" =
function(coeffs, inte) {
kappa <- inte$par[["kappa"]]
sigma <- inte$interpret(coeffs,inte)$param$sigma
return(list(cif="sftcr",
par=list(sigma=sigma,kappa=kappa),
ntypes=1))
},
"Strauss process" =
function(coeffs, inte) {
gamma <- inte$interpret(coeffs,inte)$param$gamma
r <- inte$par[["r"]]
return(list(cif = "strauss",
par = list(gamma = gamma, r = r),
ntypes=1))
},
"Strauss - hard core process" =
function(coeffs, inte) {
gamma <- inte$interpret(coeffs,inte)$param$gamma
r <- inte$par[["r"]]
hc <- inte$par[["hc"]]
return(list(cif='straush',
par=list(gamma=gamma,r=r,hc=hc),
ntypes=1))
},
"Triplets process" =
function(coeffs, inte) {
gamma <- inte$interpret(coeffs,inte)$param$gamma
r <- inte$par[["r"]]
return(list(cif = "triplets",
par = list(gamma = gamma, r = r),
ntypes=1))
},
"Penttinen process" =
function(coeffs, inte) {
gamma <- inte$interpret(coeffs,inte)$param$gamma
r <- inte$par[["r"]]
return(list(cif='penttinen',
par=list(gamma=gamma, r=r),
ntypes=1))
},
"Multitype Strauss process" =
function(coeffs, inte) {
# interaction radii r[i,j]
radii <- inte$par[["radii"]]
# interaction parameters gamma[i,j]
gamma <- (inte$interpret)(coeffs, inte)$param$gammas
return(list(cif='straussm',
par=list(gamma=gamma,radii=radii),
ntypes=ncol(radii)))
},
"Multitype Strauss Hardcore process" =
function(coeffs, inte) {
# interaction radii r[i,j]
iradii <- inte$par[["iradii"]]
# hard core radii r[i,j]
hradii <- inte$par[["hradii"]]
# interaction parameters gamma[i,j]
gamma <- (inte$interpret)(coeffs, inte)$param$gammas
return(list(cif='straushm',
par=list(gamma=gamma,iradii=iradii,hradii=hradii),
ntypes=ncol(iradii)))
},
"Piecewise constant pairwise interaction process" =
function(coeffs, inte) {
r <- inte$par[["r"]]
gamma <- (inte$interpret)(coeffs, inte)$param$gammas
h <- stepfun(r, c(gamma, 1))
return(list(cif='lookup', par=list(h=h),
ntypes=1))
},
"Area-interaction process" =
function(coeffs, inte) {
r <- inte$par[["r"]]
eta <- (inte$interpret)(coeffs, inte)$param$eta
return(list(cif='areaint', par=list(eta=eta,r=r), ntypes=1))
},
"hybrid Geyer process" =
function(coeffs, inte) {
r <- inte$par[["r"]]
sat <- inte$par[["sat"]]
gamma <- (inte$interpret)(coeffs,inte)$param$gammas
return(list(cif='badgey',par=list(gamma=gamma,r=r,sat=sat), ntypes=1))
},
"Hybrid interaction"=
function(coeffs, inte){
# for hybrids, $par is a list of the component interactions
interlist <- inte$par
# check for Poisson components
ispois <- unlist(lapply(interlist, is.poisson))
if(all(ispois)) {
# reduces to Poisson
Z <- list(cif='poisson', par=list())
return(Z)
} else if(any(ispois)) {
# remove Poisson components
interlist <- interlist[!ispois]
}
#
N <- length(interlist)
cifs <- character(N)
pars <- vector(mode="list", length=N)
ntyp <- integer(N)
for(i in 1:N) {
interI <- interlist[[i]]
# forbid hybrids-of-hybrids - these should not occur anyway
if(interI$name == "Hybrid interaction")
stop("Simulation of a hybrid-of-hybrid interaction is not implemented")
# get RMH mapping for I-th component
siminfoI <- .Spatstat.Rmhinfo[[interI$name]]
if(is.null(siminfoI))
stop(paste("Simulation of a fitted", sQuote(interI$name),
"has not yet been implemented"),
call.=FALSE)
# nameI is the tag that identifies I-th component in hybrid
nameI <- names(interlist)[[i]]
nameI. <- paste(nameI, ".", sep="")
# find coefficients with prefix that exactly matches nameI.
Cname <- names(coeffs)
prefixlength <- nchar(nameI.)
Cprefix <- substr(Cname, 1, prefixlength)
relevant <- (Cprefix == nameI.)
# extract coefficients
# (there may be none, if this interaction is an 'offset')
coeffsI <- coeffs[relevant]
# remove the prefix so the coefficients are recognisable to 'siminfoI'
if(any(relevant))
names(coeffsI) <-
substr(Cname[relevant], prefixlength+1, max(nchar(Cname)))
# compute RMH info
ZI <- siminfoI(coeffsI, interI)
cifs[i] <- ZI$cif
pars[[i]] <- ZI$par
ntyp[i] <- ZI$ntypes
}
nt <- unique(ntyp[ntyp != 1])
if(length(nt) > 1)
stop(paste("Hybrid components have different numbers of types:",
commasep(nt)))
if(N == 1) {
# single cif: revert to original format: par is a list of parameters
Z <- list(cif=cifs[1], par=pars[[1]], ntypes=ntyp)
} else {
# hybrid cif: par is a list of lists of parameters
Z <- list(cif=cifs, par=pars, ntypes=ntyp)
}
return(Z)
}
)
# OTHER MODELS not yet implemented:
#
#
# interaction object rmh.default
# ------------------ -----------
#
# OrdThresh <none>
#
rmhmodel.ppm <- function(model, w, ...,
verbose=TRUE, project=TRUE,
control=rmhcontrol(),
new.coef=NULL) {
## converts ppm object `model' into format palatable to rmh.default
verifyclass(model, "ppm")
argh <- list(...)
if(!is.null(new.coef))
model <- tweak.coefs(model, new.coef)
## Ensure the fitted model is valid
## (i.e. exists mathematically as a point process)
if(!valid.ppm(model)) {
if(project) {
if(verbose)
cat("Model is invalid - projecting it\n")
model <- project.ppm(model, fatal=TRUE)
} else stop("The fitted model is not a valid point process")
}
if(verbose)
cat("Extracting model information...")
## Extract essential information
Y <- summary(model, quick="no variances")
if(Y$marked && !Y$multitype)
stop("Not implemented for marked point processes other than multitype")
if(Y$uses.covars && is.data.frame(model$covariates))
stop(paste("This model cannot be simulated, because the",
"covariate values were given as a data frame."))
## enforce defaults for `control'
control <- rmhcontrol(control)
## adjust to peculiarities of model
control <- rmhResolveControl(control, model)
######## Interpoint interaction
if(Y$poisson) {
Z <- list(cif="poisson",
par=list()) # par is filled in later
} else {
## First check version number of ppm object
if(Y$antiquated)
stop(paste("This model was fitted by a very old version",
"of the package: spatstat", Y$version,
"; simulation is not possible.",
"Re-fit the model using your original code"))
else if(Y$old)
warning(paste("This model was fitted by an old version",
"of the package: spatstat", Y$version,
". Re-fit the model using update.ppm",
"or your original code"))
## Extract the interpoint interaction object
inte <- Y$entries$interaction
## Determine whether the model can be simulated using rmh
siminfo <- .Spatstat.Rmhinfo[[inte$name]]
if(is.null(siminfo))
stop(paste("Simulation of a fitted", sQuote(inte$name),
"has not yet been implemented"))
## Get fitted model's canonical coefficients
coeffs <- Y$entries$coef
if(newstyle.coeff.handling(inte)) {
## extract only the interaction coefficients
Vnames <- Y$entries$Vnames
IsOffset <- Y$entries$IsOffset
coeffs <- coeffs[Vnames[!IsOffset]]
}
## Translate the model to the format required by rmh.default
Z <- siminfo(coeffs, inte)
if(is.null(Z))
stop("The model cannot be simulated")
else if(is.null(Z$cif))
stop(paste("Internal error: no cif returned from .Spatstat.Rmhinfo"))
}
## Don't forget the types
if(Y$multitype && is.null(Z$types))
Z$types <- levels(Y$entries$marks)
######## Window for result
if(missing(w) || is.null(w)) {
## check for outdated argument name 'win'
if(!is.na(m <- match("win", names(argh)))) {
warning("Argument 'win' to rmhmodel.ppm is deprecated; use 'w'")
w <- argh[[m]]
argh <- argh[-m]
} else w <- Y$entries$data$window
}
Z$w <- w
######## Expanded window for simulation?
covims <- if(Y$uses.covars) model$covariates[Y$covars.used] else NULL
wsim <- rmhResolveExpansion(w, control, covims, "covariate")$wsim
###### Trend or Intensity ############
if(verbose)
cat("Evaluating trend...")
if(Y$stationary) {
## first order terms (beta or beta[i]) are carried in Z$par
beta <- as.numeric(Y$trend$value)
Z$trend <- NULL
} else {
## trend terms present
## all first order effects are subsumed in Z$trend
beta <- if(!Y$marked) 1 else rep.int(1, length(Z$types))
## predict on window possibly larger than original data window
Z$trend <-
if(wsim$type == "mask")
predict(model, window=wsim, type="trend", locations=wsim)
else
predict(model, window=wsim, type="trend")
}
Ncif <- length(Z$cif)
if(Ncif == 1) {
## single interaction
Z$par[["beta"]] <- beta
} else {
## hybrid interaction
if(all(Z$ntypes == 1)) {
## unmarked model: scalar 'beta' is absorbed in first cif
absorb <- 1
} else {
## multitype model: vector 'beta' is absorbed in a multitype cif
absorb <- min(which(Z$ntypes > 1))
}
Z$par[[absorb]]$beta <- beta
## other cifs have par$beta = 1
for(i in (1:Ncif)[-absorb])
Z$par[[i]]$beta <- rep.int(1, Z$ntypes[i])
}
if(verbose)
cat("done.\n")
Z <- do.call(rmhmodel, append(list(Z), argh))
return(Z)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.